IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v116y2024icp218-234.html
   My bibliography  Save this article

Tail mean-variance portfolio selection with estimation risk

Author

Listed:
  • Huang, Zhenzhen
  • Wei, Pengyu
  • Weng, Chengguo

Abstract

Tail Mean-Variance (TMV) has emerged from the actuarial community as a criterion for risk management and portfolio selection, with a focus on extreme losses. The existing literature on portfolio optimization under the TMV criterion relies on the plug-in approach that substitutes the unknown mean vector and covariance matrix of asset returns in the optimal portfolio weights with their sample counterparts. However, the plug-in method inevitably introduces estimation risk and usually leads to poor out-of-sample portfolio performance. To address this issue, we propose a combination of the plug-in and 1/N rules and optimize its expected out-of-sample performance. Our study is based on the Mean-Variance-Standard-deviation (MVS) performance measure, which encompasses the TMV, classical Mean-Variance, and Mean-Standard-Deviation (MStD) as special cases. The MStD criterion is particularly relevant to mean-risk portfolio selection when risk is measured by quantile-based risk measures. Our proposed combined portfolio consistently outperforms both the plug-in MVS and 1/N portfolios in simulated and real-world datasets.

Suggested Citation

  • Huang, Zhenzhen & Wei, Pengyu & Weng, Chengguo, 2024. "Tail mean-variance portfolio selection with estimation risk," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 218-234.
  • Handle: RePEc:eee:insuma:v:116:y:2024:i:c:p:218-234
    DOI: 10.1016/j.insmatheco.2024.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724000362
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    2. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    3. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    4. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    5. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
    6. Alexander, Gordon J. & Baptista, Alexandre M., 2002. "Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1159-1193, July.
    7. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    8. Klein, Roger W. & Bawa, Vijay S., 1977. "Abstract: The Effect of Limited Information and Estimation Risk on Optimal Portfolio Diversification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 669-669, November.
    9. MacKinlay, A Craig & Pastor, Lubos, 2000. "Asset Pricing Models: Implications for Expected Returns and Portfolio Selection," The Review of Financial Studies, Society for Financial Studies, vol. 13(4), pages 883-916.
    10. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2023. "On the Combination of Naive and Mean-Variance Portfolio Strategies," LIDAM Reprints LFIN 2023012, Université catholique de Louvain, Louvain Finance (LFIN).
    11. Xue Dong He & Hanqing Jin & Xun Yu Zhou, 2015. "Dynamic Portfolio Choice When Risk Is Measured by Weighted VaR," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 773-796, March.
    12. Taras Bodnar & Yarema Okhrin & Nestor Parolya, 2022. "Optimal Shrinkage-Based Portfolio Selection in High Dimensions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 140-156, December.
    13. Ignatieva, Katja & Landsman, Zinoviy, 2015. "Estimating the tails of loss severity via conditional risk measures for the family of symmetric generalised hyperbolic distributions," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 172-186.
    14. Xu, Maochao & Mao, Tiantian, 2013. "Optimal capital allocation based on the Tail Mean–Variance model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 533-543.
    15. Das, Sanjiv & Markowitz, Harry & Scheid, Jonathan & Statman, Meir, 2010. "Portfolio Optimization with Mental Accounts," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(2), pages 311-334, April.
    16. DeMiguel, Victor & Martín-Utrera, Alberto & Nogales, Francisco J., 2015. "Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 50(6), pages 1443-1471, December.
    17. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    18. Kalymon, Basil A., 1971. "Estimation Risk in the Portfolio Selection Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(1), pages 559-582, January.
    19. Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
    20. Raymond Kan & Xiaolu Wang & Guofu Zhou, 2022. "Optimal Portfolio Choice with Estimation Risk: No Risk-Free Asset Case," Management Science, INFORMS, vol. 68(3), pages 2047-2068, March.
    21. Zinoviy Landsman & Udi Makov, 2016. "Minimization of a Function of a Quadratic Functional with Application to Optimal Portfolio Selection," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 308-322, July.
    22. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    23. Taras Bodnar & Yarema Okhrin, 2011. "On the Product of Inverse Wishart and Normal Distributions with Applications to Discriminant Analysis and Portfolio Theory," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(2), pages 311-331, June.
    24. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    25. Haff, L. R., 1979. "An identity for the Wishart distribution with applications," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 531-544, December.
    26. Esmat Jamshidi Eini & Hamid Khaloozadeh, 2022. "Tail variance for Generalized Skew-Elliptical distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(2), pages 519-536, January.
    27. Pengyu Wei, 2018. "Risk management with weighted VaR," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 1020-1060, October.
    28. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Multivariate tail conditional expectation for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 216-223.
    29. Landsman, Zinoviy & Pat, Nika & Dhaene, Jan, 2013. "Tail Variance premiums for log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 441-447.
    30. Z. Landsman & U. Makov & T. Shushi, 2020. "Portfolio Optimization by a Bivariate Functional of the Mean and Variance," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 622-651, May.
    31. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    32. Owadally, Iqbal & Landsman, Zinoviy, 2013. "A characterization of optimal portfolios under the tail mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 213-221.
    33. Robert Novy-Marx & Mihail Velikov, 2016. "A Taxonomy of Anomalies and Their Trading Costs," The Review of Financial Studies, Society for Financial Studies, vol. 29(1), pages 104-147.
    34. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    35. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    36. Lassance, Nathan, 2021. "Maximizing the Out-of-Sample Sharpe Ratio," LIDAM Discussion Papers LFIN 2021013, Université catholique de Louvain, Louvain Finance (LFIN).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eini, Esmat Jamshidi & Khaloozadeh, Hamid, 2021. "The tail mean–variance optimal portfolio selection under generalized skew-elliptical distribution," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 44-50.
    2. Hwang, Inchang & Xu, Simon & In, Francis, 2018. "Naive versus optimal diversification: Tail risk and performance," European Journal of Operational Research, Elsevier, vol. 265(1), pages 372-388.
    3. Kircher, Felix & Rösch, Daniel, 2021. "A shrinkage approach for Sharpe ratio optimal portfolios with estimation risks," Journal of Banking & Finance, Elsevier, vol. 133(C).
    4. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    5. Miguel, Victor de & Nogales, Francisco J., 2013. "Parameter uncertainty in multiperiod portfolio optimization with transaction costs," DES - Working Papers. Statistics and Econometrics. WS ws132119, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    7. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
    8. Han, Chulwoo, 2020. "A nonparametric approach to portfolio shrinkage," Journal of Banking & Finance, Elsevier, vol. 120(C).
    9. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    10. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    11. Irina Murtazashvili & Nadia Vozlyublennaia, 2013. "Diversification Strategies: Do Limited Data Constrain Investors?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 36(2), pages 215-232, June.
    12. Lassance, Nathan, 2022. "Reconciling mean-variance portfolio theory with non-Gaussian returns," European Journal of Operational Research, Elsevier, vol. 297(2), pages 729-740.
    13. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    14. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    15. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    16. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    17. Platanakis, Emmanouil & Sutcliffe, Charles & Ye, Xiaoxia, 2021. "Horses for courses: Mean-variance for asset allocation and 1/N for stock selection," European Journal of Operational Research, Elsevier, vol. 288(1), pages 302-317.
    18. Tu, Xueyong & Li, Bin, 2024. "Robust portfolio selection with smart return prediction," Economic Modelling, Elsevier, vol. 135(C).
    19. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    20. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.

    More about this item

    Keywords

    Tail mean-variance; Portfolio selection; Estimation risk; Portfolio combination; Out-of-sample performance;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:116:y:2024:i:c:p:218-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.