IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.05201.html
   My bibliography  Save this paper

Multivariate tail covariance for generalized skew-elliptical distributions

Author

Listed:
  • Baishuai Zuo
  • Chuancun Yin

Abstract

In this paper, the multivariate tail covariance (MTCov) for generalized skew-elliptical distributions is considered. Some special cases for this distribution, such as generalized skew-normal, generalized skew student-t, generalized skew-logistic and generalized skew-Laplace distributions, are also considered. In order to test the theoretical feasibility of our results, the MTCov for skewed and non skewed normal distributions are computed and compared. Finally, we give a special formula of the MTCov for generalized skew-elliptical distributions.

Suggested Citation

  • Baishuai Zuo & Chuancun Yin, 2021. "Multivariate tail covariance for generalized skew-elliptical distributions," Papers 2103.05201, arXiv.org.
  • Handle: RePEc:arx:papers:2103.05201
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.05201
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2018. "A multivariate tail covariance measure for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 27-35.
    2. Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
    3. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Multivariate tail conditional expectation for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 216-223.
    4. Kim, Joseph H.T. & Kim, So-Yeun, 2019. "Tail risk measures and risk allocation for the class of multivariate normal mean–variance mixture distributions," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 145-157.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baishuai Zuo & Chuancun Yin, 2020. "Conditional tail risk expectations for location-scale mixture of elliptical distributions," Papers 2007.09350, arXiv.org.
    2. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    3. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.
    4. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    5. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2018. "A multivariate tail covariance measure for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 27-35.
    6. Ogasawara, Haruhiko, 2021. "A non-recursive formula for various moments of the multivariate normal distribution with sectional truncation," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    7. Baishuai Zuo & Chuancun Yin, 2022. "Multivariate doubly truncated moments for generalized skew-elliptical distributions with application to multivariate tail conditional risk measures," Papers 2203.00839, arXiv.org.
    8. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    9. Ansari, Jonathan & Shushi, Tomer & Vanduffel, Steven, 2024. "Up- and down-correlations in normal variance mixture models," Statistics & Probability Letters, Elsevier, vol. 205(C).
    10. Roozegar, Roohollah & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2020. "On moments of doubly truncated multivariate normal mean–variance mixture distributions with application to multivariate tail conditional expectation," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    11. Baishuai Zuo & Chuancun Yin, 2022. "Doubly truncated moment risk measures for elliptical distributions," Papers 2203.01091, arXiv.org.
    12. Wang, Bingjie & Li, Jinzhu, 2024. "Asymptotic results on tail moment for light-tailed risks," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 43-55.
    13. Huang, Zhenzhen & Wei, Pengyu & Weng, Chengguo, 2024. "Tail mean-variance portfolio selection with estimation risk," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 218-234.
    14. Ling, Chengxiu, 2019. "Asymptotics of multivariate conditional risk measures for Gaussian risks," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 205-215.
    15. Nawaf Mohammed & Edward Furman & Jianxi Su, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of Conditional Tail Expectation," Papers 2102.05003, arXiv.org, revised Aug 2021.
    16. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    17. Shuo Gong & Yijun Hu & Linxiao Wei, 2022. "Risk measurement of joint risk of portfolios: a liquidity shortfall aspect," Papers 2212.04848, arXiv.org, revised May 2024.
    18. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    19. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    20. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.05201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.