IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1805.06632.html
   My bibliography  Save this paper

Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions

Author

Listed:
  • William B. Haskell
  • Wenjie Huang
  • Huifu Xu

Abstract

Decision maker's preferences are often captured by some choice functions which are used to rank prospects. In this paper, we consider ambiguity in choice functions over a multi-attribute prospect space. Our main result is a robust preference model where the optimal decision is based on the worst-case choice function from an ambiguity set constructed through preference elicitation with pairwise comparisons of prospects. Differing from existing works in the area, our focus is on quasi-concave choice functions rather than concave functions and this enables us to cover a wide range of utility/risk preference problems including multi-attribute expected utility and $S$-shaped aspirational risk preferences. The robust choice function is increasing and quasi-concave but not necessarily translation invariant, a key property of monetary risk measures. We propose two approaches based respectively on the support functions and level functions of quasi-concave functions to develop tractable formulations of the maximin preference robust optimization model. The former gives rise to a mixed integer linear programming problem whereas the latter is equivalent to solving a sequence of convex risk minimization problems. To assess the effectiveness of the proposed robust preference optimization model and numerical schemes, we apply them to a security budget allocation problem and report some preliminary results from experiments.

Suggested Citation

  • William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
  • Handle: RePEc:arx:papers:1805.06632
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1805.06632
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nilay Noyan & Gábor Rudolf, 2013. "Optimization with Multivariate Conditional Value-at-Risk Constraints," Operations Research, INFORMS, vol. 61(4), pages 990-1013, August.
    2. Jian Hu & Sanjay Mehrotra, 2015. "Robust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimization," IISE Transactions, Taylor & Francis Journals, vol. 47(4), pages 358-372, April.
    3. David B. Brown & Enrico De Giorgi & Melvyn Sim, 2012. "Aspirational Preferences and Their Representation by Risk Measures," Management Science, INFORMS, vol. 58(11), pages 2095-2113, November.
    4. Shao-Wei Lam & Tsan Sheng Ng & Melvyn Sim & Jin-Hwa Song, 2013. "Multiple Objectives Satisficing Under Uncertainty," Operations Research, INFORMS, vol. 61(1), pages 214-227, February.
    5. David B. Brown & Melvyn Sim, 2009. "Satisficing Measures for Analysis of Risky Positions," Management Science, INFORMS, vol. 55(1), pages 71-84, January.
    6. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    7. Azaron, A. & Brown, K.N. & Tarim, S.A. & Modarres, M., 2008. "A multi-objective stochastic programming approach for supply chain design considering risk," International Journal of Production Economics, Elsevier, vol. 116(1), pages 129-138, November.
    8. George W. Torrance & Michael H. Boyle & Sargent P. Horwood, 1982. "Application of Multi-Attribute Utility Theory to Measure Social Preferences for Health States," Operations Research, INFORMS, vol. 30(6), pages 1043-1069, December.
    9. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    10. Mohammad E. Nikoofal & Jun Zhuang, 2012. "Robust Allocation of a Defensive Budget Considering an Attacker's Private Information," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 930-943, May.
    11. Fliege, Jörg & Werner, Ralf, 2014. "Robust multiobjective optimization & applications in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 422-433.
    12. Galichon, Alfred & Henry, Marc, 2012. "Dual theory of choice with multivariate risks," Journal of Economic Theory, Elsevier, vol. 147(4), pages 1501-1516.
    13. Balder, Erik J & Yannelis, Nicholas C, 1993. "On the Continuity of Expected Utility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(4), pages 625-643, October.
    14. Vicki M. Bier & Naraphorn Haphuriwat & Jaime Menoyo & Rae Zimmerman & Alison M. Culpen, 2008. "Optimal Resource Allocation for Defense of Targets Based on Differing Measures of Attractiveness," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 763-770, June.
    15. Ilia Tsetlin & Robert L. Winkler, 2009. "Multiattribute Utility Satisfying a Preference for Combining Good with Bad," Management Science, INFORMS, vol. 55(12), pages 1942-1952, December.
    16. Ralph L. Keeney, 1974. "Multiplicative Utility Functions," Operations Research, INFORMS, vol. 22(1), pages 22-34, February.
    17. Benjamin Armbruster & Erick Delage, 2015. "Decision Making Under Uncertainty When Preference Information Is Incomplete," Management Science, INFORMS, vol. 61(1), pages 111-128, January.
    18. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    19. H. Xu, 2001. "Level Function Method for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 108(2), pages 407-437, February.
    20. Mao, James C T, 1970. "Survey of Capital Budgeting: Theory and Practice," Journal of Finance, American Finance Association, vol. 25(2), pages 349-360, May.
    21. repec:dau:papers:123456789/353 is not listed on IDEAS
    22. John M. Miyamoto & Peter Wakker, 1996. "Multiattribute Utility Theory Without Expected Utility Foundations," Operations Research, INFORMS, vol. 44(2), pages 313-326, April.
    23. Haskell, William B. & Fu, Lunce & Dessouky, Maged, 2016. "Ambiguity in risk preferences in robust stochastic optimization," European Journal of Operational Research, Elsevier, vol. 254(1), pages 214-225.
    24. Ali E. Abbas, 2009. "Multiattribute Utility Copulas," Operations Research, INFORMS, vol. 57(6), pages 1367-1383, December.
    25. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    26. Stefan Weber, 2006. "Distribution‐Invariant Risk Measures, Information, And Dynamic Consistency," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 419-441, April.
    27. James E. Smith & Ralph L. Keeney, 2005. "Your Money or Your Life: A Prescriptive Model for Health, Safety, and Consumption Decisions," Management Science, INFORMS, vol. 51(9), pages 1309-1325, September.
    28. Ali E. Abbas & Zhengwei Sun, 2015. "Multiattribute Utility Functions Satisfying Mutual Preferential Independence," Operations Research, INFORMS, vol. 63(2), pages 378-393, April.
    29. William B. Haskell & J. George Shanthikumar & Z. Max Shen, 2017. "Aspects of optimization with stochastic dominance," Annals of Operations Research, Springer, vol. 253(1), pages 247-273, June.
    30. Ehrgott, Matthias & Ide, Jonas & Schöbel, Anita, 2014. "Minmax robustness for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 239(1), pages 17-31.
    31. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    32. Jian Hu & Tito Homem-de-Mello & Sanjay Mehrotra, 2011. "Risk-adjusted budget allocation models with application in homeland security," IISE Transactions, Taylor & Francis Journals, vol. 43(12), pages 819-839.
    33. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    34. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    35. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    36. Ilia Tsetlin & Robert L. Winkler, 2006. "On Equivalent Target-Oriented Formulations for Multiattribute Utility," Decision Analysis, INFORMS, vol. 3(2), pages 94-99, June.
    37. Lawrence Phillips & Carlos Bana e Costa, 2007. "Transparent prioritisation, budgeting and resource allocation with multi-criteria decision analysis and decision conferencing," Annals of Operations Research, Springer, vol. 154(1), pages 51-68, October.
    38. Ilia Tsetlin & Robert L. Winkler, 2007. "Decision Making with Multiattribute Performance Targets: The Impact of Changes in Performance and Target Distributions," Operations Research, INFORMS, vol. 55(2), pages 226-233, April.
    39. Burgert, Christian & Ruschendorf, Ludger, 2006. "Consistent risk measures for portfolio vectors," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 289-297, April.
    40. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Huifu Xu & Tiejun Ma, 2020. "Quantitative Statistical Robustness for Tail-Dependent Law Invariant Risk Measures," Papers 2006.15491, arXiv.org.
    2. Jonathan Yu-Meng Li, 2021. "Inverse Optimization of Convex Risk Functions," Management Science, INFORMS, vol. 67(11), pages 7113-7141, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William B. Haskell & J. George Shanthikumar & Z. Max Shen, 2017. "Aspects of optimization with stochastic dominance," Annals of Operations Research, Springer, vol. 253(1), pages 247-273, June.
    2. Lucy Gongtao Chen & Daniel Zhuoyu Long & Melvyn Sim, 2015. "On Dynamic Decision Making to Meet Consumption Targets," Operations Research, INFORMS, vol. 63(5), pages 1117-1130, October.
    3. Aray Almen & Darinka Dentcheva, 2024. "On Risk Evaluation and Control of Distributed Multi-agent Systems," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 2025-2054, November.
    4. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    5. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    6. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    7. Xiao Liu & Simge Küçükyavuz & Nilay Noyan, 2017. "Robust multicriteria risk-averse stochastic programming models," Annals of Operations Research, Springer, vol. 259(1), pages 259-294, December.
    8. Enrico G. De Giorgi & David B. Brown & Melvyn Sim, 2010. "Dual representation of choice and aspirational preferences," University of St. Gallen Department of Economics working paper series 2010 2010-07, Department of Economics, University of St. Gallen.
    9. Wei Wang & Huifu Xu, 2023. "Preference robust distortion risk measure and its application," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 389-434, April.
    10. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    11. Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.
    12. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    13. Yannick Armenti & Stéphane Crépey & Samuel Drapeau & Antonis Papapantoleon, 2018. "Multivariate Shortfall Risk Allocation and Systemic Risk," Working Papers hal-01764398, HAL.
    14. David B. Brown & Enrico De Giorgi & Melvyn Sim, 2012. "Aspirational Preferences and Their Representation by Risk Measures," Management Science, INFORMS, vol. 58(11), pages 2095-2113, November.
    15. Nicholas G. Hall & Daniel Zhuoyu Long & Jin Qi & Melvyn Sim, 2015. "Managing Underperformance Risk in Project Portfolio Selection," Operations Research, INFORMS, vol. 63(3), pages 660-675, June.
    16. Jonathan Yu-Meng Li, 2021. "Inverse Optimization of Convex Risk Functions," Management Science, INFORMS, vol. 67(11), pages 7113-7141, November.
    17. Erick Delage & Jonathan Yu-Meng Li, 2018. "Minimizing Risk Exposure When the Choice of a Risk Measure Is Ambiguous," Management Science, INFORMS, vol. 64(1), pages 327-344, January.
    18. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    19. Samuel Drapeau & Mekonnen Tadese, 2019. "Relative Bound and Asymptotic Comparison of Expectile with Respect to Expected Shortfall," Papers 1906.09729, arXiv.org, revised Jun 2020.
    20. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.06632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.