IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v86y2019icp205-215.html
   My bibliography  Save this article

Asymptotics of multivariate conditional risk measures for Gaussian risks

Author

Listed:
  • Ling, Chengxiu

Abstract

This paper investigates accurate approximations of marginal moment excess, marginal conditional tail moment and marginal moment shortfall for multivariate Gaussian system risks. Based on the dimension reduction property via the quadratic programming problem, the super-exponential and polynomial convergence speeds are specified. Two interesting questions involved in risk management are well addressed, namely the minimal additional risk capital injection to avoid infinite risk contagion and a sufficient and necessary condition to alternate the convergence speeds. Numerical study and typical examples are given to illustrate the efficiency of our findings. Due to the flexible moment order, additional applications may involve in risk management, including tail mean–variance portfolio and multivariate conditional risk measures of tail covariance, tail skewness with dependence and extremal risk contagion under consideration.

Suggested Citation

  • Ling, Chengxiu, 2019. "Asymptotics of multivariate conditional risk measures for Gaussian risks," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 205-215.
  • Handle: RePEc:eee:insuma:v:86:y:2019:i:c:p:205-215
    DOI: 10.1016/j.insmatheco.2019.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668718301847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2019.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2018. "A multivariate tail covariance measure for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 27-35.
    2. Cai, J. & Einmahl, J.H.J. & de Haan, L.F.M. & Zhou, C., 2012. "Estimation of the Marginal Expected Shortfall : The Mean when a Related Variable is Extreme," Other publications TiSEM e96e039f-cb6b-4cd5-805b-5, Tilburg University, School of Economics and Management.
    3. Juan-Juan Cai & John H. J. Einmahl & Laurens Haan & Chen Zhou, 2015. "Estimation of the marginal expected shortfall: the mean when a related variable is extreme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 417-442, March.
    4. Das, Bikramjit & Fasen-Hartmann, Vicky, 2018. "Risk contagion under regular variation and asymptotic tail independence," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 194-215.
    5. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2017. "Multivariate extensions of expectiles risk measures," Post-Print hal-01478930, HAL.
    6. Zhou, Ming & Dhaene, Jan & Yao, Jing, 2018. "An approximation method for risk aggregations and capital allocation rules based on additive risk factor models," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 92-100.
    7. Hashorva, Enkelejd, 2019. "Approximation of some multivariate risk measures for Gaussian risks," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 330-340.
    8. Maume-Deschamps Véronique & Rullière Didier & Said Khalil, 2017. "Multivariate extensions of expectiles risk measures," Dependence Modeling, De Gruyter, vol. 5(1), pages 20-44, January.
    9. Cai, Jun & Wang, Ying & Mao, Tiantian, 2017. "Tail subadditivity of distortion risk measures and multivariate tail distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 105-116.
    10. Kristin J. Forbes & Roberto Rigobon, 2002. "No Contagion, Only Interdependence: Measuring Stock Market Comovements," Journal of Finance, American Finance Association, vol. 57(5), pages 2223-2261, October.
    11. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Multivariate tail conditional expectation for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 216-223.
    12. Hashorva, Enkelejd & Jaworski, Piotr, 2012. "Gaussian approximation of conditional elliptical copulas," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 397-407.
    13. Dȩbicki, Krzysztof & Hashorva, Enkelejd & Ji, Lanpeng & Rolski, Tomasz, 2018. "Extremal behavior of hitting a cone by correlated Brownian motion with drift," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4171-4206.
    14. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    15. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2017. "Multivariate Extensions Of Expectiles Risk Measures," Working Papers hal-01367277, HAL.
    16. Fry, Renée & Martin, Vance L. & Tang, Chrismin, 2010. "A New Class of Tests of Contagion With Applications," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 423-437.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ortega-Jiménez, P. & Sordo, M.A. & Suárez-Llorens, A., 2021. "Stochastic orders and multivariate measures of risk contagion," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 199-207.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashorva, Enkelejd, 2019. "Approximation of some multivariate risk measures for Gaussian risks," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 330-340.
    2. Beck, Nicholas & Di Bernardino, Elena & Mailhot, Mélina, 2021. "Semi-parametric estimation of multivariate extreme expectiles," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. E. Hashorva, 2018. "Approximation of Some Multivariate Risk Measures for Gaussian Risks," Papers 1803.06922, arXiv.org, revised Oct 2018.
    4. Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
    5. Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.
    6. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    7. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    8. Goegebeur, Yuri & Guillou, Armelle & Qin, Jing, 2024. "Dependent conditional tail expectation for extreme levels," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
    9. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.
    10. V'eronique Maume-Deschamps & Didier Rulli`ere & Khalil Said, 2017. "Asymptotic multivariate expectiles," Papers 1704.07152, arXiv.org, revised Jan 2018.
    11. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.
    12. Joanna Bruzda, 2020. "Multistep quantile forecasts for supply chain and logistics operations: bootstrapping, the GARCH model and quantile regression based approaches," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 309-336, March.
    13. Klaus Herrmann & Marius Hofert & Melina Mailhot, 2017. "Multivariate Geometric Expectiles," Papers 1704.01503, arXiv.org, revised Jan 2018.
    14. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2023. "Nonparametric estimation of conditional marginal excess moments," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    15. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2023. "A Weissman-type estimator of the conditional marginal expected shortfall," Econometrics and Statistics, Elsevier, vol. 27(C), pages 173-196.
    16. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    17. Hu, Wei & Zheng, Zhenlong, 2020. "Expectile CAPM," Economic Modelling, Elsevier, vol. 88(C), pages 386-397.
    18. Cai, Jun & Wang, Ying, 2021. "Optimal capital allocation principles considering capital shortfall and surplus risks in a hierarchical corporate structure," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 329-349.
    19. Shushi, Tomer & Yao, Jing, 2020. "Multivariate risk measures based on conditional expectation and systemic risk for Exponential Dispersion Models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 178-186.
    20. Shuo Gong & Yijun Hu & Linxiao Wei, 2022. "Risk measurement of joint risk of portfolios: a liquidity shortfall aspect," Papers 2212.04848, arXiv.org, revised May 2024.

    More about this item

    Keywords

    Gaussian system risk; Multivariate risk measures; Risk contagion; Quadratic programming problem; Marginal moment excess;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:86:y:2019:i:c:p:205-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.