IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v24y2020i4p512-532.html
   My bibliography  Save this article

Size-Biased Risk Measures of Compound Sums

Author

Listed:
  • Michel Denuit

Abstract

The size-biased, or length-biased transform is known to be particularly useful in insurance risk measurement. The case of continuous losses has been extensively considered in the actuarial literature. Given their importance in insurance studies, this article concentrates on compound sums. The zero-augmented distributions that naturally appear in the individual model of risk theory are obtained as particular cases when the claim frequency distribution is concentrated on {0, 1}. The general results derived in this article help actuaries to understand how risk measurement proceeds because the formulas make explicit the loadings corresponding to each source of randomness. Some simple and explicit expressions are obtained when losses are modeled by independent compound Poisson sums and compound mixed Poisson sums, including the compound negative binomial sums. Extensions to correlated risks are briefly discussed in the concluding section.

Suggested Citation

  • Michel Denuit, 2020. "Size-Biased Risk Measures of Compound Sums," North American Actuarial Journal, Taylor & Francis Journals, vol. 24(4), pages 512-532, October.
  • Handle: RePEc:taf:uaajxx:v:24:y:2020:i:4:p:512-532
    DOI: 10.1080/10920277.2019.1676787
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2019.1676787
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2019.1676787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denuit, Michel & Robert, Christian Y., 2021. "Polynomial series expansions and moment approximations for conditional mean risk sharing of insurance losses," LIDAM Discussion Papers ISBA 2021016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Denuit, M. & Robert, C.Y., 2020. "Ultimate behavior of conditional mean risk sharing for independent compound Panjer-Katz sums with gamma and Pareto severities," LIDAM Discussion Papers ISBA 2020014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:24:y:2020:i:4:p:512-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.