IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v145y2019icp12-20.html
   My bibliography  Save this article

On the consistency of penalized MLEs for Erlang mixtures

Author

Listed:
  • Yin, Cuihong
  • Sheldon Lin, X.
  • Huang, Rongtan
  • Yuan, Haili

Abstract

In Yin and Lin (2016), a new penalty, termed as iSCAD penalty, is proposed to obtain the maximum likelihood estimates (MLEs) of the weights and the common scale parameter of an Erlang mixture model. In that paper, it is shown through simulation studies and a real data application that the penalty provides an efficient way to determine the MLEs and the order of the mixture. In this paper, we provide a theoretical justification and show that the penalized maximum likelihood estimators of the weights and the scale parameter as well as the order of mixture are all consistent.

Suggested Citation

  • Yin, Cuihong & Sheldon Lin, X. & Huang, Rongtan & Yuan, Haili, 2019. "On the consistency of penalized MLEs for Erlang mixtures," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 12-20.
  • Handle: RePEc:eee:stapro:v:145:y:2019:i:c:p:12-20
    DOI: 10.1016/j.spl.2018.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218302797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiahua Chen & Pengfei Li & Yuejiao Fu, 2012. "Inference on the Order of a Normal Mixture," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1096-1105, September.
    2. Hashorva, Enkelejd & Ratovomirija, Gildas, 2015. "On Sarmanov Mixed Erlang Risks In Insurance Applications," ASTIN Bulletin, Cambridge University Press, vol. 45(1), pages 175-205, January.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Lysa Porth & Wenjun Zhu & Ken Seng Tan, 2014. "A credibility-based Erlang mixture model for pricing crop reinsurance," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 74(2), pages 162-187, July.
    5. Verbelen, Roel & Gong, Lan & Antonio, Katrien & Badescu, Andrei & Lin, Sheldon, 2015. "Fitting Mixtures Of Erlangs To Censored And Truncated Data Using The Em Algorithm," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 729-758, September.
    6. Yin, Cuihong & Lin, X. Sheldon, 2016. "EFFICIENT ESTIMATION OF ERLANG MIXTURES USING iSCAD PENALTY WITH INSURANCE APPLICATION," ASTIN Bulletin, Cambridge University Press, vol. 46(3), pages 779-799, September.
    7. Gabriela Ciuperca & Andrea Ridolfi & Jérôme Idier, 2003. "Penalized Maximum Likelihood Estimator for Normal Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 45-59, March.
    8. Simon Lee & X. Lin, 2010. "Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 107-130.
    9. Cossette, Hélène & Côté, Marie-Pier & Marceau, Etienne & Moutanabbir, Khouzeima, 2013. "Multivariate distribution defined with Farlie–Gumbel–Morgenstern copula and mixed Erlang marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 560-572.
    10. Chen, Jiahua & Khalili, Abbas, 2008. "Order Selection in Finite Mixture Models With a Nonsmooth Penalty," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1674-1683.
    11. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Multivariate mixtures of Erlangs for density estimation under censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 429-455, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxing He & Jiahua Chen, 2022. "Consistency of the MLE under a two-parameter Gamma mixture model with a structural shape parameter," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(8), pages 951-975, November.
    2. Mingxing He & Jiahua Chen, 2022. "Strong consistency of the MLE under two-parameter Gamma mixture models with a structural scale parameter," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 125-154, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    2. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    3. Ratovomirija, Gildas & Tamraz, Maissa & Vernic, Raluca, 2017. "On some multivariate Sarmanov mixed Erlang reinsurance risks: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 197-209.
    4. Gildas Ratovomirija, 2015. "Multivariate Stop loss Mixed Erlang Reinsurance risk: Aggregation, Capital allocation and Default risk," Papers 1501.07297, arXiv.org.
    5. Delong, Łukasz & Lindholm, Mathias & Wüthrich, Mario V., 2021. "Gamma Mixture Density Networks and their application to modelling insurance claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 240-261.
    6. Mingxing He & Jiahua Chen, 2022. "Strong consistency of the MLE under two-parameter Gamma mixture models with a structural scale parameter," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 125-154, March.
    7. Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    8. Luis Rincón & David J. Santana, 2022. "Ruin Probability for Finite Erlang Mixture Claims Via Recurrence Sequences," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2213-2236, September.
    9. Raluca Vernic, 2017. "Capital Allocation for Sarmanov’s Class of Distributions," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 311-330, March.
    10. Blostein, Martin & Miljkovic, Tatjana, 2019. "On modeling left-truncated loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 35-46.
    11. Albrecher, Hansjörg & Cheung, Eric C.K. & Liu, Haibo & Woo, Jae-Kyung, 2022. "A bivariate Laguerre expansions approach for joint ruin probabilities in a two-dimensional insurance risk process," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 96-118.
    12. Xu, Peirong & Peng, Heng & Huang, Tao, 2018. "Unsupervised learning of mixture regression models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 44-56.
    13. Nawaf Mohammed & Edward Furman & Jianxi Su, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of Conditional Tail Expectation," Papers 2102.05003, arXiv.org, revised Aug 2021.
    14. Vernic, Raluca, 2018. "On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 184-193.
    15. Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
    16. Zhou, Jie & Song, Xinyuan & Sun, Liuquan, 2020. "Continuous time hidden Markov model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    17. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Multivariate mixtures of Erlangs for density estimation under censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 429-455, July.
    18. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    19. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    20. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:145:y:2019:i:c:p:12-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.