IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v170y2016i1d10.1007_s10957-015-0856-z.html
   My bibliography  Save this article

Minimization of a Function of a Quadratic Functional with Application to Optimal Portfolio Selection

Author

Listed:
  • Zinoviy Landsman

    (University of Haifa)

  • Udi Makov

    (University of Haifa)

Abstract

We present an explicit closed-form solution to the problem of minimizing the combination of linear functional and a function of quadratic functional, subject to a system of affine constraints. This is of interest for solving important problems in financial economics related to optimal portfolio selection. The new results essentially generalize previous results of the authors concerning optimal portfolio selection with translation invariant and positive homogeneous risk measures. The classical mean-variance model and the recently introduced and investigated tail mean-variance model are special cases of the problem discussed here.

Suggested Citation

  • Zinoviy Landsman & Udi Makov, 2016. "Minimization of a Function of a Quadratic Functional with Application to Optimal Portfolio Selection," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 308-322, July.
  • Handle: RePEc:spr:joptap:v:170:y:2016:i:1:d:10.1007_s10957-015-0856-z
    DOI: 10.1007/s10957-015-0856-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0856-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0856-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Landsman, Zinoviy, 2010. "On the Tail Mean-Variance optimal portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 547-553, June.
    2. Z. Landsman & U. Makov, 2011. "Translation-invariant and positive-homogeneous risk measures and optimal portfolio management," The European Journal of Finance, Taylor & Francis Journals, vol. 17(4), pages 307-320.
    3. Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
    4. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Zhenzhen & Wei, Pengyu & Weng, Chengguo, 2024. "Tail mean-variance portfolio selection with estimation risk," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 218-234.
    2. Nicole Bauerle & Tomer Shushi, 2019. "Risk Management with Tail Quasi-Linear Means," Papers 1902.06941, arXiv.org, revised Jan 2020.
    3. Zhijun Xu & Jing Zhou, 2023. "A simultaneous diagonalization based SOCP relaxation for portfolio optimization with an orthogonality constraint," Computational Optimization and Applications, Springer, vol. 85(1), pages 247-261, May.
    4. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2018. "A Generalized Measure for the Optimal Portfolio Selection Problem and its Explicit Solution," Risks, MDPI, vol. 6(1), pages 1-15, March.
    5. Tahsin Deniz Aktürk & Çağın Ararat, 2020. "Portfolio optimization with two coherent risk measures," Journal of Global Optimization, Springer, vol. 78(3), pages 597-626, November.
    6. Tahsin Deniz Akturk & c{C}au{g}{i}n Ararat, 2019. "Portfolio optimization with two coherent risk measures," Papers 1903.10454, arXiv.org, revised Jul 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    2. Owadally, Iqbal & Landsman, Zinoviy, 2013. "A characterization of optimal portfolios under the tail mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 213-221.
    3. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    4. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Tail conditional moments for elliptical and log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 179-188.
    5. Mohamed Ibrahim & Walid Emam & Yusra Tashkandy & M. Masoom Ali & Haitham M. Yousof, 2023. "Bayesian and Non-Bayesian Risk Analysis and Assessment under Left-Skewed Insurance Data and a Novel Compound Reciprocal Rayleigh Extension," Mathematics, MDPI, vol. 11(7), pages 1-26, March.
    6. Landsman, Zinoviy & Makov, Udi, 2012. "Translation-invariant and positive-homogeneous risk measures and optimal portfolio management in the presence of a riskless component," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 94-98.
    7. Xu, Maochao & Mao, Tiantian, 2013. "Optimal capital allocation based on the Tail Mean–Variance model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 533-543.
    8. Landsman, Zinoviy, 2010. "On the Tail Mean-Variance optimal portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 547-553, June.
    9. Eini, Esmat Jamshidi & Khaloozadeh, Hamid, 2021. "The tail mean–variance optimal portfolio selection under generalized skew-elliptical distribution," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 44-50.
    10. Z. Landsman & U. Makov & T. Shushi, 2020. "Portfolio Optimization by a Bivariate Functional of the Mean and Variance," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 622-651, May.
    11. Wang, Qiyu & Huang, Wenli & Wu, Xin & Zhang, Chao, 2019. "How effective is the tail mean-variance model in the fund of fund selection? An empirical study using various risk measures," Finance Research Letters, Elsevier, vol. 29(C), pages 239-244.
    12. Haitham M. Yousof & Walid Emam & Yusra Tashkandy & M. Masoom Ali & R. Minkah & Mohamed Ibrahim, 2023. "A Novel Model for Quantitative Risk Assessment under Claim-Size Data with Bimodal and Symmetric Data Modeling," Mathematics, MDPI, vol. 11(6), pages 1-31, March.
    13. Xiangyu Han & Chuancun Yin, 2022. "Tail Conditional Moments for Location-Scale Mixture of Elliptical Distributions," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
    14. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    15. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    16. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    17. Shuzhen Yang, 2019. "A varying terminal time mean-variance model," Papers 1909.13102, arXiv.org, revised Jan 2020.
    18. Felix Fie{ss}inger & Mitja Stadje, 2024. "Mean-Variance Optimization for Participating Life Insurance Contracts," Papers 2407.11761, arXiv.org.
    19. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    20. Zied Ftiti & Aviral Tiwari & Amél Belanès & Khaled Guesmi, 2015. "Tests of Financial Market Contagion: Evolutionary Cospectral Analysis Versus Wavelet Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 46(4), pages 575-611, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:170:y:2016:i:1:d:10.1007_s10957-015-0856-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.