Tail variance of portfolio under generalized Laplace distribution
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2016.02.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Stoyanov, Stoyan V. & Rachev, Svetlozar T. & Fabozzi, Frank J., 2013.
"CVaR sensitivity with respect to tail thickness,"
Journal of Banking & Finance, Elsevier, vol. 37(3), pages 977-988.
- Stoyanov, Stoyan V. & Rachev, Svetlozar T. & Fabozzi, Frank J., 2011. "CVaR sensitivity with respect to tail thickness," Working Paper Series in Economics 29, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
- Chen, Zhiping & Yang, Li, 2011. "Nonlinearly weighted convex risk measure and its application," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1777-1793, July.
- Benati, Stefano, 2004. "The computation of the worst conditional expectation," European Journal of Operational Research, Elsevier, vol. 155(2), pages 414-425, June.
- Zhu, Dongming & Galbraith, John W., 2010.
"A generalized asymmetric Student-t distribution with application to financial econometrics,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
- Dongming Zhu & John W. Galbraith, 2009. "A Generalized Asymmetric Student-t Distribution with Application to Financial Econometrics," CIRANO Working Papers 2009s-13, CIRANO.
- John Galbraith & Dongming Zhu, 2009. "A Generalized Asymmetric Student-T Distribution With Application To Financial Econometrics," Departmental Working Papers 2009-02, McGill University, Department of Economics.
- Marc S. Paolella, 2015. "Multivariate asset return prediction with mixture models," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1214-1252, November.
- Landsman, Zinoviy & Makov, Udi, 2012. "Translation-invariant and positive-homogeneous risk measures and optimal portfolio management in the presence of a riskless component," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 94-98.
- Landsman, Zinoviy & Pat, Nika & Dhaene, Jan, 2013. "Tail Variance premiums for log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 441-447.
- Buckley, Ian & Saunders, David & Seco, Luis, 2008. "Portfolio optimization when asset returns have the Gaussian mixture distribution," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1434-1461, March.
- Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
- Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
- Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.
- Bernardi, Mauro, 2013.
"Risk measures for skew normal mixtures,"
Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1819-1824.
- Bernardi, Mauro, 2012. "Risk measures for Skew Normal mixtures," MPRA Paper 39828, University Library of Munich, Germany.
- Ignatieva, Katja & Landsman, Zinoviy, 2015. "Estimating the tails of loss severity via conditional risk measures for the family of symmetric generalised hyperbolic distributions," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 172-186.
- Xu, Maochao & Mao, Tiantian, 2013. "Optimal capital allocation based on the Tail Mean–Variance model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 533-543.
- Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012.
"Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model,"
Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
- Kim, Young Shin & Giacometti, Rosella & Rachev, Svetlozar T. & Fabozzi, Frank J. & Mignacca, Domenico, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Working Paper Series in Economics 44, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Ledoit, Olivier & Wolf, Michael, 2003.
"Improved estimation of the covariance matrix of stock returns with an application to portfolio selection,"
Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
- Ledoit, Olivier & Wolf, Michael, 2000. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," DES - Working Papers. Statistics and Econometrics. WS 10089, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Olivier Ledoit & Michael Wolf, 2001. "Improved estimation of the covariance matrix of stock returns with an application to portofolio selection," Economics Working Papers 586, Department of Economics and Business, Universitat Pompeu Fabra.
- So, Mike K.P. & Chen, Cathy W.S. & Lee, Jen-Yu & Chang, Yi-Ping, 2008. "An empirical evaluation of fat-tailed distributions in modeling financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 96-108.
- Owadally, Iqbal & Landsman, Zinoviy, 2013. "A characterization of optimal portfolios under the tail mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 213-221.
- Landsman, Zinoviy, 2010. "On the Tail Mean-Variance optimal portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 547-553, June.
- Acerbi, Carlo & Tasche, Dirk, 2002.
"On the coherence of expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
- Carlo Acerbi & Dirk Tasche, 2001. "On the coherence of Expected Shortfall," Papers cond-mat/0104295, arXiv.org, revised May 2002.
- Wenbo Hu & Alec Kercheval, 2010. "Portfolio optimization for student t and skewed t returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 91-105.
- Sordo, Miguel A., 2009. "Comparing tail variabilities of risks by means of the excess wealth order," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 466-469, December.
- Z. Landsman & U. Makov, 2011. "Translation-invariant and positive-homogeneous risk measures and optimal portfolio management," The European Journal of Finance, Taylor & Francis Journals, vol. 17(4), pages 307-320.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
- Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
- Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
- Inui, Koji & Kijima, Masaaki, 2005. "On the significance of expected shortfall as a coherent risk measure," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 853-864, April.
- Ester Pantaleo & Michele Tumminello & Fabrizio Lillo & Rosario Mantegna, 2011.
"When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators,"
Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1067-1080.
- Ester Pantaleo & Michele Tumminello & Fabrizio Lillo & Rosario N. Mantegna, 2010. "When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators," Papers 1004.4272, arXiv.org.
- Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
- Dobrislav Dobrev∗ & Travis D. Nesmith & Dong Hwan Oh, 2017.
"Accurate Evaluation of Expected Shortfall for Linear Portfolios with Elliptically Distributed Risk Factors,"
JRFM, MDPI, vol. 10(1), pages 1-14, February.
- Dobrislav Dobrev & Travis D. Nesmith & Dong Hwan Oh, 2016. "Accurate Evaluation of Expected Shortfall for Linear Portfolios with Elliptically Distributed Risk Factors," Finance and Economics Discussion Series 2016-065, Board of Governors of the Federal Reserve System (U.S.).
- Huang, Zhenzhen & Wei, Pengyu & Weng, Chengguo, 2024. "Tail mean-variance portfolio selection with estimation risk," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 218-234.
- Eini, Esmat Jamshidi & Khaloozadeh, Hamid, 2021. "The tail mean–variance optimal portfolio selection under generalized skew-elliptical distribution," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 44-50.
- Furman, Edward & Hackmann, Daniel & Kuznetsov, Alexey, 2020. "On log-normal convolutions: An analytical–numerical method with applications to economic capital determination," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 120-134.
- Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Eini, Esmat Jamshidi & Khaloozadeh, Hamid, 2021. "The tail mean–variance optimal portfolio selection under generalized skew-elliptical distribution," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 44-50.
- Huang, Zhenzhen & Wei, Pengyu & Weng, Chengguo, 2024. "Tail mean-variance portfolio selection with estimation risk," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 218-234.
- Cerqueti, Roy & Giacalone, Massimiliano & Panarello, Demetrio, 2019. "A Generalized Error Distribution Copula-based method for portfolios risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 687-695.
- Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
- Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
- Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
- Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
- Strub, Moris S. & Li, Duan & Cui, Xiangyu & Gao, Jianjun, 2019. "Discrete-time mean-CVaR portfolio selection and time-consistency induced term structure of the CVaR," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
- Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
- Dominique Guegan & Bertrand Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Post-Print halshs-00969242, HAL.
- Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
- Laurent Gardes & Stéphane Girard, 2021. "On the estimation of the variability in the distribution tail," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 884-907, December.
- Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
- Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
- Borgonovo, Emanuele & Gatti, Stefano, 2013. "Risk analysis with contractual default. Does covenant breach matter?," European Journal of Operational Research, Elsevier, vol. 230(2), pages 431-443.
- Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
- Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
- Dominique Guegan & Bertrand K Hassani, 2014.
"Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions,"
Documents de travail du Centre d'Economie de la Sorbonne
14008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Dominique Guegan & Bertrand Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00969242, HAL.
- Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
- Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
More about this item
Keywords
Portfolio; Risk measure; Tail variance; Conditional value-at-risk; Generalized Laplace distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:282:y:2016:i:c:p:187-203. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.