IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip1p606-612.html
   My bibliography  Save this article

The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico–mechanical properties and energy expenses

Author

Listed:
  • Šiaudinis, Gintaras
  • Jasinskas, Algirdas
  • Šarauskis, Egidijus
  • Steponavičius, Dainius
  • Karčauskienė, Danutė
  • Liaudanskienė, Inga

Abstract

Field and laboratory trials of the energy crop species Virginia mallow (Sida hermaphrodita L. Rusby) and cup plant (Silphium perfoliatum L.) were conducted to evaluate the effects of liming and nitrogen application on biomass and energy productivity and the suitability of the biomass for biofuel production. Independent of the growing year, the average DM (dry mass) yields of cup plant and Virginia mallow ranged from 6746 kg ha−1 to 13,485 kg ha−1 and from 4675 kg ha−1 to 7451 kg ha−1, respectively. The Virginia mallow and cup plant pellet humidity ranged from 9.6% to 11.6%, and the Virginia mallow pellet density reached 969.3 kg m−3 DM. The ash contents of the Virginia mallow and cup plant pellet were high, reaching 10% and 6.1%, respectively. The net calorific values of the Virginia mallow and cup plant dry masses were 17.49–18.44 kJ ha−1 and 17.19 to 17.48 kJ kg−1, respectively, and were correlated with the biomass crude fibre content with energy outputs of 79–105 GJ ha−1 (for Virginia mallow) and 200–236 GJ ha−1 (for cup plant). The energy expenses of the Virginia mallow and cup plant growing methods (including planting and harvesting year) reached 8630–29,264 MJ ha−1.

Suggested Citation

  • Šiaudinis, Gintaras & Jasinskas, Algirdas & Šarauskis, Egidijus & Steponavičius, Dainius & Karčauskienė, Danutė & Liaudanskienė, Inga, 2015. "The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico–mechanical properties and energy expenses," Energy, Elsevier, vol. 93(P1), pages 606-612.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:606-612
    DOI: 10.1016/j.energy.2015.09.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421501275X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.09.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Managing the moisture content of wood biomass for the optimisation of Ireland's transport supply strategy to bioenergy markets and competing industries," Energy, Elsevier, vol. 86(C), pages 354-368.
    2. Cherney, Jerome H. & Verma, Vijay Kumar, 2013. "Grass pellet Quality Index: A tool to evaluate suitability of grass pellets for small scale combustion systems," Applied Energy, Elsevier, vol. 103(C), pages 679-684.
    3. Niedziółka, Ignacy & Szpryngiel, Mieczysław & Kachel-Jakubowska, Magdalena & Kraszkiewicz, Artur & Zawiślak, Kazimierz & Sobczak, Paweł & Nadulski, Rafał, 2015. "Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass," Renewable Energy, Elsevier, vol. 76(C), pages 312-317.
    4. Šarauskis, Egidijus & Buragienė, Sidona & Masilionytė, Laura & Romaneckas, Kęstutis & Avižienytė, Dovile & Sakalauskas, Antanas, 2014. "Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation," Energy, Elsevier, vol. 69(C), pages 227-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Algirdas Jasinskas & Dionizas Streikus & Egidijus Šarauskis & Mečys Palšauskas & Kęstutis Venslauskas, 2020. "Energy Evaluation and Greenhouse Gas Emissions of Reed Plant Pelletizing and Utilization as Solid Biofuel," Energies, MDPI, vol. 13(6), pages 1-14, March.
    2. Von Cossel, M. & Lewin, E. & Lewandowski, I. & Jablonowski, N.D., 2024. "Energy yield decline of Sida hermaphrodita harvested for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    3. Černiauskienė, Živilė & Raila, Algirdas Jonas & Zvicevičius, Egidijus & Kadžiulienė, Žydrė & Tilvikienė, Vita, 2018. "Analysis of Artemisia dubia Wall. growth, preparation for biofuel and thermal conversion properties," Renewable Energy, Elsevier, vol. 118(C), pages 468-476.
    4. Kwiatkowski, Jacek & Graban, Łukasz & Stolarski, Mariusz J., 2023. "The energy efficiency of Virginia fanpetals biomass production for solid biofuel," Energy, Elsevier, vol. 264(C).
    5. Jona Šurić & Neven Voća & Anamarija Peter & Nikola Bilandžija & Ivan Brandić & Lato Pezo & Josip Leto, 2023. "Use of Artificial Neural Networks to Model Biomass Properties of Miscanthus ( Miscanthus × giganteus ) and Virginia Mallow ( Sida hermaphrodita L.) in View of Harvest Season," Energies, MDPI, vol. 16(11), pages 1-20, May.
    6. Algirdas Jasinskas & Ramūnas Mieldažys & Eglė Jotautienė & Rolandas Domeika & Edvardas Vaiciukevičius & Marek Marks, 2020. "Technical, Environmental, and Qualitative Assessment of the Oak Waste Processing and Its Usage for Energy Conversion," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    7. Michał Krzyżaniak & Mariusz J. Stolarski & Kazimierz Warmiński, 2020. "Life Cycle Assessment of Giant Miscanthus: Production on Marginal Soil with Various Fertilisation Treatments," Energies, MDPI, vol. 13(8), pages 1-15, April.
    8. Jasinskas, Algirdas & Streikus, Dionizas & Vonžodas, Tomas, 2020. "Fibrous hemp (Felina 32, USO 31, Finola) and fibrous nettle processing and usage of pressed biofuel for energy purposes," Renewable Energy, Elsevier, vol. 149(C), pages 11-21.
    9. Nikola Bilandžija & Tajana Krička & Ana Matin & Josip Leto & Mateja Grubor, 2018. "Effect of Harvest Season on the Fuel Properties of Sida hermaphrodita (L.) Rusby Biomass as Solid Biofuel," Energies, MDPI, vol. 11(12), pages 1-13, December.
    10. Algirdas Jasinskas & Vytautas Kleiza & Dionizas Streikus & Rolandas Domeika & Edvardas Vaiciukevičius & Gvidas Gramauskas & Marvin T. Valentin, 2022. "Assessment of Quality Indicators of Pressed Biofuel Produced from Coarse Herbaceous Plants and Determination of the Influence of Moisture on the Properties of Pellets," Sustainability, MDPI, vol. 14(3), pages 1-16, January.
    11. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    12. Stolarski, Mariusz J. & Peni, Dumitru & Dębowski, Marcin, 2022. "Biogas potential of cup plant and willow-leaf sunflower biomass," Energy, Elsevier, vol. 255(C).
    13. Christian R. Parra & Angel D. Ramirez & Luis Manuel Navas-Gracia & David Gonzales & Adriana Correa-Guimaraes, 2023. "Prospects for Bioenergy Development Potential from Dedicated Energy Crops in Ecuador: An Agroecological Zoning Study," Agriculture, MDPI, vol. 13(1), pages 1-25, January.
    14. Stolarski, Mariusz J. & Krzyżaniak, Michał & Warmiński, Kazimierz & Tworkowski, Józef & Szczukowski, Stefan & Olba–Zięty, Ewelina & Gołaszewski, Janusz, 2017. "Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers," Energy, Elsevier, vol. 134(C), pages 50-60.
    15. Mariusz Jerzy Stolarski & Stefan Szczukowski & Michał Krzyżaniak & Józef Tworkowski, 2020. "Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil," Energies, MDPI, vol. 13(9), pages 1-12, April.
    16. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    17. Dumitru Peni & Mariusz Jerzy Stolarski & Anna Bordiean & Michał Krzyżaniak & Marcin Dębowski, 2020. "Silphium perfoliatum —A Herbaceous Crop with Increased Interest in Recent Years for Multi-Purpose Use," Agriculture, MDPI, vol. 10(12), pages 1-22, December.
    18. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    19. Tilvikiene, Vita & Kadziuliene, Zydre & Liaudanskiene, Inga & Zvicevicius, Egidijus & Cerniauskiene, Zivile & Cipliene, Ausra & Raila, Algirdas Jonas & Baltrusaitis, Jonas, 2020. "The quality and energy potential of introduced energy crops in northern part of temperate climate zone," Renewable Energy, Elsevier, vol. 151(C), pages 887-895.
    20. Jankowski, Krzysztof Józef & Dubis, Bogdan & Kozak, Marcin, 2021. "Sewage sludge and the energy balance of Jerusalem artichoke production - A case study in north-eastern Poland," Energy, Elsevier, vol. 236(C).
    21. Kurucz, Erika & Fári, Miklós G. & Antal, Gabriella & Gabnai, Zoltán & Popp, József & Bai, Attila, 2018. "Opportunities for the production and economics of Virginia fanpetals (Sida hermaphrodita)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 824-834.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
    2. Suha Elsoragaby & A. F. Kheiralla & Elkamil Tola & Azmi Yahya & Modather Mairghany & Mojahid Ahmed & Wael M. Elamin & Bahaaddein K. M. Mahgoub, 2024. "Energy Utilization and Greenhouse Gas (GHG) Emissions of Tillage Operation in Wetland Rice Cultivation," Land, MDPI, vol. 13(5), pages 1-13, April.
    3. Justinas Anušauskas & Andrius Grigas & Kristina Lekavičienė & Ernestas Zaleckas & Simona Paulikienė & Dainius Steponavičius, 2024. "Energy and Environmental Assessment of Bacteria-Inoculated Mineral Fertilizer Used in Spring Barley Cultivation Technologies," Agriculture, MDPI, vol. 14(4), pages 1-22, April.
    4. Zygmunt Kowalski & Agnieszka Makara, 2024. "Processing Orchard Grass into Carbon Bio Pellets via Hydrothermal Carbonisation—A Case Study Analysis," Energies, MDPI, vol. 17(12), pages 1-15, June.
    5. Mykola Kochiieru & Agnė Veršulienė & Virginijus Feiza & Dalia Feizienė, 2023. "Trend for Soil CO 2 Efflux in Grassland and Forest Land in Relation with Meteorological Conditions and Root Parameters," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    6. Eriksson, Anders & Eliasson, Lars & Sikanen, Lauri & Hansson, Per-Anders & Jirjis, Raida, 2017. "Evaluation of delivery strategies for forest fuels applying a model for Weather-driven Analysis of Forest Fuel Systems (WAFFS)," Applied Energy, Elsevier, vol. 188(C), pages 420-430.
    7. Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
    8. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    9. Garcia, Dorival Pinheiro & Caraschi, José Cláudio & Ventorim, Gustavo & Vieira, Fábio Henrique Antunes & de Paula Protásio, Thiago, 2019. "Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA)," Renewable Energy, Elsevier, vol. 139(C), pages 796-805.
    10. Sangpil Ko & Kyoungjoon Choi & Seungmin Yu & Jun Lee, 2022. "A Stochastic Optimization Model for Sustainable Multimodal Transportation for Bioenergy Production," Sustainability, MDPI, vol. 14(3), pages 1-21, February.
    11. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    12. Marrugo, Gloria & Valdés, Carlos F. & Gómez, Carlos & Chejne, Farid, 2019. "Pelletizing of Colombian agro-industrial biomasses with crude glycerol," Renewable Energy, Elsevier, vol. 134(C), pages 558-568.
    13. Zhaoyuan He & Paul Turner, 2021. "A Systematic Review on Technologies and Industry 4.0 in the Forest Supply Chain: A Framework Identifying Challenges and Opportunities," Logistics, MDPI, vol. 5(4), pages 1-22, December.
    14. Eliasson, Lars & Eriksson, Anders & Mohtashami, Sima, 2017. "Analysis of factors affecting productivity and costs for a high-performance chip supply system," Applied Energy, Elsevier, vol. 185(P1), pages 497-505.
    15. Krzysztof Kud, 2018. "Biomasa lak legowych jako integrator polityki energetycznej, przestrzennej oraz wodnej (Biomass of riparian meadows as an integrator of energy policy, spatial and water)," Research Reports, University of Warsaw, Faculty of Management, vol. 2(28), pages 80-89.
    16. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    17. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    18. Fan, Yee Van & Romanenko, Sergey & Gai, Limei & Kupressova, Ekaterina & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2021. "Biomass integration for energy recovery and efficient use of resources: Tomsk Region," Energy, Elsevier, vol. 235(C).
    19. Barbara Breza-Boruta & Karol Kotwica & Justyna Bauza-Kaszewska, 2021. "Effect of Tillage System and Organic Matter Management Interactions on Soil Chemical Properties and Biological Activity in a Spring Wheat Short-Time Cultivation," Energies, MDPI, vol. 14(21), pages 1-18, November.
    20. Nodirjon Nurmatov & Daniel Armando Leon Gomez & Frank Hensgen & Lutz Bühle & Michael Wachendorf, 2016. "High-Quality Solid Fuel Production from Leaf Litter of Urban Street Trees," Sustainability, MDPI, vol. 8(12), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:606-612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.