Influences of primary particle parameters and surfactant on aggregation behavior of nanoparticles in nanorefrigerant
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.05.116
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chandrasekaran, P. & Cheralathan, M. & Kumaresan, V. & Velraj, R., 2014. "Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system," Energy, Elsevier, vol. 72(C), pages 636-642.
- Lee, Jae Won & Kang, Yong Tae, 2013. "CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution," Energy, Elsevier, vol. 53(C), pages 206-211.
- Saidur, R. & Kazi, S.N. & Hossain, M.S. & Rahman, M.M. & Mohammed, H.A., 2011. "A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 310-323, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bhattad, Atul & Sarkar, Jahar & Ghosh, Pradyumna, 2018. "Improving the performance of refrigeration systems by using nanofluids: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3656-3669.
- Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Choi, Sung Ho & Ko, Han Seo & Sohn, Dong Kee, 2022. "Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage," Energy, Elsevier, vol. 244(PB).
- Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
- Mamourian, Mojtaba & Milani Shirvan, Kamel & Mirzakhanlari, Soroush, 2016. "Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodol," Energy, Elsevier, vol. 109(C), pages 49-61.
- Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
- Zhang, Zhien & Cai, Jianchao & Chen, Feng & Li, Hao & Zhang, Wenxiang & Qi, Wenjie, 2018. "Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status," Renewable Energy, Elsevier, vol. 118(C), pages 527-535.
- Shahrul, I.M. & Mahbubul, I.M. & Khaleduzzaman, S.S. & Saidur, R. & Sabri, M.F.M., 2014. "A comparative review on the specific heat of nanofluids for energy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 88-98.
- Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
- Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
- Chan, Chung-Hung & Tang, Sook Wah & Mohd, Noor Khairin & Lim, Wen Huei & Yeong, Shoot Kian & Idris, Zainab, 2018. "Tribological behavior of biolubricant base stocks and additives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 145-157.
- Lee, Jae Won & Torres Pineda, Israel & Lee, Jung Hun & Kang, Yong Tae, 2016. "Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents," Applied Energy, Elsevier, vol. 178(C), pages 164-176.
- Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2020. "The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler," Energy, Elsevier, vol. 190(C).
- Xu, Yang & He, Chen & Chen, Yang & Sun, Yu & Yin, Hang & Zheng, Zhang-Jing, 2023. "Experimental and numerical study on the effect of the intelligent memory metal fin on the melting and solidification process of PCM," Renewable Energy, Elsevier, vol. 218(C).
- Rashidi, S. & Bovand, M. & Abolfazli Esfahani, J., 2015. "Structural optimization of nanofluid flow around an equilateral triangular obstacle," Energy, Elsevier, vol. 88(C), pages 385-398.
- Taynara G. S. Lago & Kamal A. R. Ismail & Fátima A. M. Lino & Victor C. L. Arruda & Vivaldo Silveira Junior, 2022. "Development of Correlations of the Charging and Discharging Times of Carboxyl-Functionalized Multi-Walled Carbon Nanotubes (MWCNT-COOH) and Water with and without Polyethylene Glycol in Spherical Enca," Energies, MDPI, vol. 15(15), pages 1-22, July.
- Morimoto, Takashi & Asaoka, Tatsunori & Kumano, Hiroyuki, 2023. "Heat storage characteristics of multi-component sugar alcohol slurries," Energy, Elsevier, vol. 272(C).
- Lu, Zhe & Wang, Sheliang & Ying, Honghao & Liu, Bo & Jia, Wurong & Xie, Jiangsheng & Sun, Yanwen, 2024. "Preparation and thermal properties of eutectic phase change materials (EPCMs) with nanographite addition for cold thermal energy storage," Energy, Elsevier, vol. 290(C).
- Farhood Sarrafzadeh Javadi & Rahman Saidur, 2021. "Thermodynamic and Energy Efficiency Analysis of a Domestic Refrigerator Using Al 2 O 3 Nano-Refrigerant," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
- Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Amaris, Carlos & Bourouis, Mahmoud & Vallès, Manel, 2014. "Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber," Energy, Elsevier, vol. 68(C), pages 519-528.
- Rasheed, A.K. & Khalid, M. & Rashmi, W. & Gupta, T.C.S.M. & Chan, A., 2016. "Graphene based nanofluids and nanolubricants – Review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 346-362.
More about this item
Keywords
Aggregation; Nanoparticles; Refrigerant; Size; Surfactant;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:410-420. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.