IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipbs0360544222000718.html
   My bibliography  Save this article

Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage

Author

Listed:
  • Choi, Sung Ho
  • Ko, Han Seo
  • Sohn, Dong Kee

Abstract

In this paper, the use of bubble-driven flow on phase change material (PCM) is proposed to improve the discharge performance of a latent heat thermal energy storage system (LHTES). The upward momentum of bubbles due to its density difference can agitate liquid PCM and increase the flow velocity of liquid PCM to enhance heat transfer between the heat transfer fluid (HTF) and the PCM. To analyze the mechanism of enhanced heat transfer, visualization techniques of particle image velocimetry (PIV) and shadowgraphy were used. The result showed that the discharge time of LHTES decreased by 6%–12%. The increased flow velocity by bubble-driven flow could be observed and the expanded phase change region away from the solid/liquid interface could be identified. The average convective heat transfer coefficient is increased by maximum 1.79 times during the heat discharge period. This mechanism could accelerate the solidification process and enhance the energy discharge rate of the LHTES. Bubble-driven flow could be successfully applied to PCM to improve LHTES discharge performance.

Suggested Citation

  • Choi, Sung Ho & Ko, Han Seo & Sohn, Dong Kee, 2022. "Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage," Energy, Elsevier, vol. 244(PB).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000718
    DOI: 10.1016/j.energy.2022.123168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222000718
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2018. "Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins," Applied Energy, Elsevier, vol. 211(C), pages 975-986.
    2. Chandrasekaran, P. & Cheralathan, M. & Kumaresan, V. & Velraj, R., 2014. "Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system," Energy, Elsevier, vol. 72(C), pages 636-642.
    3. Park, Jinsoo & Choi, Sung Ho & Karng, Sarng Woo, 2021. "Cascaded latent thermal energy storage using a charging control method," Energy, Elsevier, vol. 215(PA).
    4. Seddegh, Saeid & Wang, Xiaolin & Joybari, Mahmood Mastani & Haghighat, Fariborz, 2017. "Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems," Energy, Elsevier, vol. 137(C), pages 69-82.
    5. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    6. Longeon, Martin & Soupart, Adèle & Fourmigué, Jean-François & Bruch, Arnaud & Marty, Philippe, 2013. "Experimental and numerical study of annular PCM storage in the presence of natural convection," Applied Energy, Elsevier, vol. 112(C), pages 175-184.
    7. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Applied Energy, Elsevier, vol. 191(C), pages 22-34.
    8. Yanjun Zhang & Shuli Liu & Liu Yang & Xiue Yang & Yongliang Shen & Xiaojing Han, 2020. "Experimental Study on the Strengthen Heat Transfer Performance of PCM by Active Stirring," Energies, MDPI, vol. 13(9), pages 1-16, May.
    9. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Energy, Elsevier, vol. 126(C), pages 501-512.
    10. Soni, Vikram & Kumar, Arvind & Jain, V.K., 2018. "Modeling of PCM melting: Analysis of discrepancy between numerical and experimental results and energy storage performance," Energy, Elsevier, vol. 150(C), pages 190-204.
    11. Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Najafpour, Nategheh & Adibi, Omid, 2024. "Investigating the effects of nano-enhanced phase change material on melting performance of LHTES with novel perforated hybrid stair fins," Energy, Elsevier, vol. 290(C).
    2. Kyle Shank & Saeed Tiari, 2023. "A Review on Active Heat Transfer Enhancement Techniques within Latent Heat Thermal Energy Storage Systems," Energies, MDPI, vol. 16(10), pages 1-27, May.
    3. Morimoto, Takashi & Asaoka, Tatsunori & Kumano, Hiroyuki, 2023. "Heat storage characteristics of multi-component sugar alcohol slurries," Energy, Elsevier, vol. 272(C).
    4. Tian, Shen & Ma, Jiahui & Shao, Shuangquan & Tian, Qingfeng & Wang, Zhiqiang & Zhang, Zheyu & Hu, Kaiyong, 2024. "Experimental and analytical study on continuous frozen/melting processes of latent thermal energy storage driven by bubble flow," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Sung Ho & Sohn, Dong Kee & Ko, Han Seo, 2021. "Performance enhancement of latent heat thermal energy storage by bubble-driven flow," Applied Energy, Elsevier, vol. 302(C).
    2. Park, Jinsoo & Choi, Sung Ho & Karng, Sarng Woo, 2021. "Cascaded latent thermal energy storage using a charging control method," Energy, Elsevier, vol. 215(PA).
    3. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
    4. Cao, Xiaoling & Zhang, Nan & Yuan, Yanping & Luo, Xiaolong, 2020. "Thermal performance of triplex-tube latent heat storage exchanger: simultaneous heat storage and hot water supply via condensation heat recovery," Renewable Energy, Elsevier, vol. 157(C), pages 616-625.
    5. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
    7. Fang, Y. & Qu, Z.G. & Zhang, J.F. & Xu, H.T. & Qi, G.L., 2020. "Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material," Applied Energy, Elsevier, vol. 275(C).
    8. Mohammad Javad Zarei & Hassan Bazai & Mohsen Sharifpur & Omid Mahian & Bahman Shabani, 2020. "The Effects of Fin Parameters on the Solidification of PCMs in a Fin-Enhanced Thermal Energy Storage System," Energies, MDPI, vol. 13(1), pages 1-20, January.
    9. Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
    10. Mohammad Ghalambaz & Hayder I. Mohammed & Jasim M. Mahdi & Amir Hossein Eisapour & Obai Younis & Aritra Ghosh & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System," Energies, MDPI, vol. 14(6), pages 1-19, March.
    11. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    12. Mekrisuh, Kedumese u & Singh, Dushyant & Udayraj,, 2020. "Performance analysis of a vertically oriented concentric-tube PCM based thermal energy storage system: Parametric study and correlation development," Renewable Energy, Elsevier, vol. 149(C), pages 902-916.
    13. Yang, Kun & Zhu, Neng & Li, Yongzhao & Du, Na, 2021. "Effect of parameters on the melting performance of triplex tube heat exchanger incorporating phase change material," Renewable Energy, Elsevier, vol. 174(C), pages 359-371.
    14. Huang, Xinyu & Li, Fangfei & Li, Yuanji & Meng, Xiangzhao & Yang, Xiaohu & Sundén, Bengt, 2023. "Optimization of melting performance of a heat storage tank under rotation conditions: Based on taguchi design and response surface method," Energy, Elsevier, vol. 271(C).
    15. Aramesh, M. & Shabani, B., 2022. "Metal foam-phase change material composites for thermal energy storage: A review of performance parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Mohammad Ghalambaz & Jasim M. Mahdi & Amirhossein Shafaghat & Amir Hossein Eisapour & Obai Younis & Pouyan Talebizadeh Sardari & Wahiba Yaïci, 2021. "Effect of Twisted Fin Array in a Triple-Tube Latent Heat Storage System during the Charging Mode," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    17. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    18. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    19. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Shahsavar, Amin & Goodarzi, Abbas & Mohammed, Hayder I. & Shirneshan, Alireza & Talebizadehsardari, Pouyan, 2020. "Thermal performance evaluation of non-uniform fin array in a finned double-pipe latent heat storage system," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.