Tribological behavior of biolubricant base stocks and additives
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2018.05.024
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rafiq, M. & Lv, Y.Z. & Zhou, Y. & Ma, K.B. & Wang, W. & Li, C.R. & Wang, Q., 2015. "Use of vegetable oils as transformer oils – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 308-324.
- Saidur, R. & Kazi, S.N. & Hossain, M.S. & Rahman, M.M. & Mohammed, H.A., 2011. "A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 310-323, January.
- Mariprasath, T. & Kirubakaran, V., 2016. "A critical review on the characteristics of alternating liquid dielectrics and feasibility study on pongamia pinnata oil as liquid dielectrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 784-799.
- Panchal, Tirth M. & Patel, Ankit & Chauhan, D.D. & Thomas, Merlin & Patel, Jigar V., 2017. "A methodological review on bio-lubricants from vegetable oil based resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 65-70.
- Zulkifli, N.W.M. & Kalam, M.A. & Masjuki, H.H. & Shahabuddin, M. & Yunus, R., 2013. "Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant," Energy, Elsevier, vol. 54(C), pages 167-173.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rasep, Z. & Muhammad Yazid, M.N.A.W. & Samion, S., 2021. "Lubrication of textured journal bearing by using vegetable oil: A review of approaches, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Zhang, Wei & Wu, Jinquan & Yu, Senshen & Shen, Ying & Wu, Yamin & Chen, Biqiang & Nie, Kaili & Zhang, Xu, 2020. "Modification and synthesis of low pour point plant-based lubricants with ionic liquid catalysis," Renewable Energy, Elsevier, vol. 153(C), pages 1320-1329.
- Ho, Calvin K. & McAuley, Kimberley B. & Peppley, Brant A., 2019. "Biolubricants through renewable hydrocarbons: A perspective for new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Sergio Nogales-Delgado & José María Encinar & Juan Félix González, 2019. "Safflower Biodiesel: Improvement of its Oxidative Stability by Using BHA and TBHQ," Energies, MDPI, vol. 12(10), pages 1-13, May.
- Bahadi, Murad & Salimon, Jumat & Derawi, Darfizzi, 2021. "Synthesis of di-trimethylolpropane tetraester-based biolubricant from Elaeis guineensis kernel oil via homogeneous acid-catalyzed transesterification," Renewable Energy, Elsevier, vol. 171(C), pages 981-993.
- Hamnas, Amina & Unnikrishnan, G., 2023. "Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qiu, Qinpan & Zhang, Jingwen & Yang, Lu & Zhang, Jinzhu & Chen, Binghao & Tang, Chao, 2021. "Simulation of the diffusion behavior of water molecules in palm oil and mineral oil at different temperatures," Renewable Energy, Elsevier, vol. 174(C), pages 909-917.
- Hamnas, Amina & Unnikrishnan, G., 2023. "Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Farfan-Cabrera, Leonardo Israel & Gallardo-Hernández, Ezequiel Alberto & Gómez-Guarneros, Mario & Pérez-González, José & Godínez-Salcedo, Jesús Gilberto, 2020. "Alteration of lubricity of Jatropha oil used as bio-lubricant for engines due to thermal ageing," Renewable Energy, Elsevier, vol. 149(C), pages 1197-1204.
- Cristina Méndez & Cristian Olmo & Ismael Antolín & Alfredo Ortiz & Carlos J. Renedo, 2024. "Analysing the Suitability of Using Different Biodegradable Fluids for Power Transformers with Thermally Upgraded Paper," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
- Peng, Hao & Lin, Lingnan & Ding, Guoliang, 2015. "Influences of primary particle parameters and surfactant on aggregation behavior of nanoparticles in nanorefrigerant," Energy, Elsevier, vol. 89(C), pages 410-420.
- Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
- Muñoz, Robinson & González, Aixa & Valdebenito, Fabiola & Ciudad, Gustavo & Navia, Rodrigo & Pecchi, Gina & Azócar, Laura, 2020. "Fly ash as a new versatile acid-base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 162(C), pages 1931-1939.
- Sánchez, A.S. & Almeida, M.B. & Torres, E.A. & Kalid, R.A. & Cohim, E. & Gasparatos, A., 2018. "Alternative biodiesel feedstock systems in the Semi-arid region of Brazil: Implications for ecosystem services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2744-2758.
- Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Shahrul, I.M. & Mahbubul, I.M. & Khaleduzzaman, S.S. & Saidur, R. & Sabri, M.F.M., 2014. "A comparative review on the specific heat of nanofluids for energy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 88-98.
- Saxena, Ankit & Kumar, Deepak & Tandon, Naresh, 2022. "Unexplored potential of acacia and guar gum to develop bio-based greases with impressive tribological performance: A possible alternative to mineral oil-based greases," Renewable Energy, Elsevier, vol. 200(C), pages 505-515.
- Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
- Arumugam, S. & Sriram, G. & Ellappan, R., 2014. "Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine," Energy, Elsevier, vol. 72(C), pages 618-627.
- Chen, Rui & Qiu, Qinpan & Peng, Xiao & Tang, Chao, 2023. "Surface modified h-BN towards enhanced electrical properties and thermal conductivity of natural ester insulating oil," Renewable Energy, Elsevier, vol. 204(C), pages 185-196.
- Mariprasath, T. & Kirubakaran, V., 2016. "A critical review on the characteristics of alternating liquid dielectrics and feasibility study on pongamia pinnata oil as liquid dielectrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 784-799.
- Kosse, Elijah & Devadoss, Stephen, 2016. "Welfare Analysis of the U.S.-Mexican Tomato Suspension Agreement," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252726, Southern Agricultural Economics Association.
- Rajendra Uppar & P. Dinesha & Shiva Kumar, 2023. "A critical review on vegetable oil-based bio-lubricants: preparation, characterization, and challenges," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9011-9046, September.
- El Khaled, D. & Novas, N. & Gazquez, J.A. & Manzano-Agugliaro, F., 2018. "Microwave dielectric heating: Applications on metals processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2880-2892.
- Farhood Sarrafzadeh Javadi & Rahman Saidur, 2021. "Thermodynamic and Energy Efficiency Analysis of a Domestic Refrigerator Using Al 2 O 3 Nano-Refrigerant," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
- Bahadi, Murad & Salimon, Jumat & Derawi, Darfizzi, 2021. "Synthesis of di-trimethylolpropane tetraester-based biolubricant from Elaeis guineensis kernel oil via homogeneous acid-catalyzed transesterification," Renewable Energy, Elsevier, vol. 171(C), pages 981-993.
More about this item
Keywords
Vegetable oil; Biolubricant; Additives; Tribology; Friction coefficient; Wear;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:145-157. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.