IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v88y2015icp385-398.html
   My bibliography  Save this article

Structural optimization of nanofluid flow around an equilateral triangular obstacle

Author

Listed:
  • Rashidi, S.
  • Bovand, M.
  • Abolfazli Esfahani, J.

Abstract

Convective heat transfer of Al2O3–water nanofluid over an equilateral triangular obstacle with an optimization analysis is carried out to determine the optimum conditions for the maximum heat transfer rate and the minimum drag coefficient. Orientations of the obstacle, values of the solid volume fraction, and Reynolds number are selected as the input parameters. The analysis is performed according to the Response Surface Methodology. The response surface equation is obtained using the design of the experiments features. Two-dimensional unsteady equations with the relevant boundary conditions have been solved using finite volume method. Three different orientations of the triangular obstacle are defined for the optimization procedure. The computational simulations are done for different Reynolds numbers (1≤Re≤180), solid volume fractions (0≤φ≤0.05) and orientations of the triangular obstacle (0°≤θ≤60°). Also, a comparison is performed between the results of CFD analysis and Response Surface Methodology. It is found that the minimum drag coefficient is occurred at θ = 35.13°, Re = 97.6 and φ = 0.01 and the maximum Nusselt number is found at θ = 8.49°, Re = 180 and φ = 0.05.

Suggested Citation

  • Rashidi, S. & Bovand, M. & Abolfazli Esfahani, J., 2015. "Structural optimization of nanofluid flow around an equilateral triangular obstacle," Energy, Elsevier, vol. 88(C), pages 385-398.
  • Handle: RePEc:eee:energy:v:88:y:2015:i:c:p:385-398
    DOI: 10.1016/j.energy.2015.05.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215006374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2014. "Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature," Energy, Elsevier, vol. 77(C), pages 403-413.
    2. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    3. AfDB AfDB, . "The AfDB Statistics Pocketbook 2007," AfDB Statistics Pocketbook, African Development Bank, number 2 edited by Koua Louis Kouakou.
    4. Singh, Satyender & Dhiman, Prashant, 2014. "Thermal and thermohydraulic performance evaluation of a novel type double pass packed bed solar air heater under external recycle using an analytical and RSM (response surface methodology) combined ap," Energy, Elsevier, vol. 72(C), pages 344-359.
    5. Saidi, Majid & Karimi, Gholamreza, 2014. "Free convection cooling in modified L-shape enclosures using copper–water nanofluid," Energy, Elsevier, vol. 70(C), pages 251-271.
    6. Al-Nimr, Moh'd A. & Al-Dafaie, Ameer Mohammed Abbas, 2014. "Using nanofluids in enhancing the performance of a novel two-layer solar pond," Energy, Elsevier, vol. 68(C), pages 318-326.
    7. Mohammad Zadeh, P. & Sokhansefat, T. & Kasaeian, A.B. & Kowsary, F. & Akbarzadeh, A., 2015. "Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid," Energy, Elsevier, vol. 82(C), pages 857-864.
    8. Sheikholeslami, M. & Gorji-Bandpy, M. & Ganji, D.D., 2013. "Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM," Energy, Elsevier, vol. 60(C), pages 501-510.
    9. Bahiraei, Mehdi & Hangi, Morteza, 2014. "Numerical simulation of nanofluid application in a C-shaped chaotic channel: A potential approach for energy efficiency improvement," Energy, Elsevier, vol. 74(C), pages 863-870.
    10. Kazemi-Beydokhti, Amin & Zeinali Heris, Saeed, 2012. "Thermal optimization of combined heat and power (CHP) systems using nanofluids," Energy, Elsevier, vol. 44(1), pages 241-247.
    11. anonymous, 2007. "Bank asset growth robust, statistics show," Financial Update, Federal Reserve Bank of Atlanta, vol. 20(2).
    12. Chandrasekaran, P. & Cheralathan, M. & Kumaresan, V. & Velraj, R., 2014. "Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system," Energy, Elsevier, vol. 72(C), pages 636-642.
    13. AfDB AfDB, . "Selected Statistics on African Countries 2007," Selected Statistics on African Countries, African Development Bank, number 75 edited by Koua Louis Kouakou.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mamourian, Mojtaba & Milani Shirvan, Kamel & Mirzakhanlari, Soroush, 2016. "Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodol," Energy, Elsevier, vol. 109(C), pages 49-61.
    2. Amzad Hossain & Md. Mamun Molla & Md. Kamrujjaman & Muhammad Mohebujjaman & Suvash C. Saha, 2023. "MHD Mixed Convection of Non-Newtonian Bingham Nanofluid in a Wavy Enclosure with Temperature-Dependent Thermophysical Properties: A Sensitivity Analysis by Response Surface Methodology," Energies, MDPI, vol. 16(11), pages 1-39, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamourian, Mojtaba & Milani Shirvan, Kamel & Mirzakhanlari, Soroush, 2016. "Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodol," Energy, Elsevier, vol. 109(C), pages 49-61.
    2. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    3. Xu Bai & Jinxi Wu & Yun Liu & Yihan Xu, 2020. "Research on the impact of global innovation network on 3D printing industry performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1015-1051, August.
    4. Nane, Gabriela F. & Larivière, Vincent & Costas, Rodrigo, 2017. "Predicting the age of researchers using bibliometric data," Journal of Informetrics, Elsevier, vol. 11(3), pages 713-729.
    5. Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
    6. C. Iglesias & J. Martínez Torres & P. García Nieto & J. Alonso Fernández & C. Díaz Muñiz & J. Piñeiro & J. Taboada, 2014. "Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 319-331, January.
    7. Nieto, P.J. García & Fernández, J.R. Alonso & Suárez, V.M. González & Muñiz, C. Díaz & García-Gonzalo, E. & Bayón, R. Mayo, 2015. "A hybrid PSO optimized SVM-based method for predicting of the cyanotoxin content from experimental cyanobacteria concentrations in the Trasona reservoir: A case study in Northern Spain," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 170-187.
    8. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    9. Bahiraei, Mehdi & Hangi, Morteza, 2014. "Numerical simulation of nanofluid application in a C-shaped chaotic channel: A potential approach for energy efficiency improvement," Energy, Elsevier, vol. 74(C), pages 863-870.
    10. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
    11. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    12. Shujie Yao & Dan Luo & Stephen Morgan, 2008. "Shanghai Stock Exchange Composite Index and Bank Stock Prices in China: A Causality Analysis," Discussion Papers 08/25, University of Nottingham, GEP.
    13. Lyons Russell, 2011. "The Spread of Evidence-Poor Medicine via Flawed Social-Network Analysis," Statistics, Politics and Policy, De Gruyter, vol. 2(1), pages 1-29, May.
    14. Garg, A. & Lam, Jasmine Siu Lee, 2017. "Design of explicit models for estimating efficiency characteristics of microbial fuel cells," Energy, Elsevier, vol. 134(C), pages 136-156.
    15. Manikandan, S. & Rajan, K.S., 2015. "MgO-Therminol 55 nanofluids for efficient energy management: Analysis of transient heat transfer performance," Energy, Elsevier, vol. 88(C), pages 408-416.
    16. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    17. Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2020. "The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler," Energy, Elsevier, vol. 190(C).
    18. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & Milanese, Marco & de Risi, Arturo, 2016. "Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems," Energy, Elsevier, vol. 95(C), pages 124-136.
    19. Ambreen, Tehmina & Kim, Man-Hoe, 2020. "Influence of particle size on the effective thermal conductivity of nanofluids: A critical review," Applied Energy, Elsevier, vol. 264(C).
    20. Mico Apostolov, 2016. "Cobb–Douglas production function on FDI in Southeast Europe," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:88:y:2015:i:c:p:385-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.