IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp519-528.html
   My bibliography  Save this article

Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber

Author

Listed:
  • Amaris, Carlos
  • Bourouis, Mahmoud
  • Vallès, Manel

Abstract

The present study aims to quantify experimentally the individual and simultaneous effects of CNTs (carbon nanotubes) and advanced surfaces on the performance of an NH3/LiNO3 tubular bubble absorber. Operating conditions are those of interest for use in air-cooled absorption chillers driven by low temperature heat sources. Firstly, experimental tests were performed with the tubular absorber fitted with an inner smooth surface to analyze the effect of adding carbon nanotubes (0.01 wt%) to the base mixture NH3/LiNO3. Then, the tubular absorber was tested using an inner advanced surface tube both with and without adding carbon nanotubes to the base mixture NH3/LiNO3. The advanced surface tube is made of aluminum and has internal helical micro-fins measuring 0.3 mm in length.

Suggested Citation

  • Amaris, Carlos & Bourouis, Mahmoud & Vallès, Manel, 2014. "Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber," Energy, Elsevier, vol. 68(C), pages 519-528.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:519-528
    DOI: 10.1016/j.energy.2014.02.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421400173X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Jae Won & Kang, Yong Tae, 2013. "CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution," Energy, Elsevier, vol. 53(C), pages 206-211.
    2. Moreno-Quintanar, G. & Rivera, W. & Best, R., 2012. "Comparison of the experimental evaluation of a solar intermittent refrigeration system for ice production operating with the mixtures NH3/LiNO3 and NH3/LiNO3/H2O," Renewable Energy, Elsevier, vol. 38(1), pages 62-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    2. Jesús Cerezo & Roberto Best & Jorge Jesús Chan & Rosenberg J. Romero & Jorge I. Hernandez & Fernando Lara, 2017. "A Theoretical-Experimental Comparison of an Improved Ammonia-Water Bubble Absorber by Means of a Helical Static Mixer," Energies, MDPI, vol. 11(1), pages 1-14, December.
    3. Lee, Jong Sung & Lee, Jae Won & Kang, Yong Tae, 2015. "CO2 absorption/regeneration enhancement in DI water with suspended nanoparticles for energy conversion application," Applied Energy, Elsevier, vol. 143(C), pages 119-129.
    4. Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2020. "The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler," Energy, Elsevier, vol. 190(C).
    5. Asfand, Faisal & Stiriba, Youssef & Bourouis, Mahmoud, 2015. "CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems," Energy, Elsevier, vol. 91(C), pages 517-530.
    6. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    7. Lee, Jae Won & Torres Pineda, Israel & Lee, Jung Hun & Kang, Yong Tae, 2016. "Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents," Applied Energy, Elsevier, vol. 178(C), pages 164-176.
    8. Yazid, Muhammad Noor Afiq Witri Muhammad & Sidik, Nor Azwadi Che & Yahya, Wira Jazair, 2017. "Heat and mass transfer characteristics of carbon nanotube nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 914-941.
    9. Carlos Amaris & Maria E. Alvarez & Manel Vallès & Mahmoud Bourouis, 2020. "Performance Assessment of an NH 3 /LiNO 3 Bubble Plate Absorber Applying a Semi-Empirical Model and Artificial Neural Networks," Energies, MDPI, vol. 13(17), pages 1-20, August.
    10. Ji, Qiang & Han, Zongwei & Li, Xiuming & Yang, Lingyan, 2022. "Energy and economic evaluation of the air source hybrid heating system driven by off-peak electric thermal storage in cold regions," Renewable Energy, Elsevier, vol. 182(C), pages 69-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yijian & Jiang, Yunyun & Fan, Yuchen & Chen, Guangming & Tang, Liming, 2020. "Utilization of ultra-low temperature heat by a novel cascade refrigeration system with environmentally-friendly refrigerants," Renewable Energy, Elsevier, vol. 157(C), pages 204-213.
    2. Farhad Ghadyanlou & Ahmad Azari & Ali Vatani, 2022. "Experimental Investigation of Mass Transfer Intensification for CO 2 Capture by Environment-Friendly Water Based Nanofluid Solvents in a Rotating Packed Bed," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    3. Peng, Hao & Lin, Lingnan & Ding, Guoliang, 2015. "Influences of primary particle parameters and surfactant on aggregation behavior of nanoparticles in nanorefrigerant," Energy, Elsevier, vol. 89(C), pages 410-420.
    4. Zhang, Shaozhi & Luo, Jielin & Xu, Yiyang & Chen, Guangming & Wang, Qin, 2021. "Thermodynamic analysis of a combined cycle of ammonia-based battery and absorption refrigerator," Energy, Elsevier, vol. 220(C).
    5. Lee, Jae Won & Kim, Seonggon & Torres Pineda, Israel & Kang, Yong Tae, 2021. "Review of nanoabsorbents for capture enhancement of CO2 and its industrial applications with design criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Gao, J. & Wang, L.W. & An, G.L. & Liu, J.Y. & Xu, S.Z., 2018. "Performance analysis of multi-salt sorbents without sorption hysteresis for low-grade heat recovery," Renewable Energy, Elsevier, vol. 118(C), pages 718-726.
    7. Zhang, Zhien & Cai, Jianchao & Chen, Feng & Li, Hao & Zhang, Wenxiang & Qi, Wenjie, 2018. "Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status," Renewable Energy, Elsevier, vol. 118(C), pages 527-535.
    8. Chen Zhang & Yunsong Yu & Chenyang Zhou & Jingfeng Zhang & Zaoxiao Zhang & Geoff G.X. Wang, 2021. "Liquid metal with solvents for CO2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 988-1000, October.
    9. Lee, Jae Won & Torres Pineda, Israel & Lee, Jung Hun & Kang, Yong Tae, 2016. "Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents," Applied Energy, Elsevier, vol. 178(C), pages 164-176.
    10. Shuo Yan & Wenjie Dai & Shuli Wang & Yongchao Rao & Shidong Zhou, 2018. "Graphene Oxide: An Effective Promoter for CO 2 Hydrate Formation," Energies, MDPI, vol. 11(7), pages 1-13, July.
    11. Lee, Jong Sung & Lee, Jae Won & Kang, Yong Tae, 2015. "CO2 absorption/regeneration enhancement in DI water with suspended nanoparticles for energy conversion application," Applied Energy, Elsevier, vol. 143(C), pages 119-129.
    12. Alvaro A. S. Lima & Gustavo de N. P. Leite & Alvaro A. V. Ochoa & Carlos A. C. dos Santos & José A. P. da Costa & Paula S. A. Michima & Allysson M. A. Caldas, 2020. "Absorption Refrigeration Systems Based on Ammonia as Refrigerant Using Different Absorbents: Review and Applications," Energies, MDPI, vol. 14(1), pages 1-41, December.
    13. Hernández-Magallanes, J.A. & Domínguez-Inzunza, L.A. & Gutiérrez-Urueta, G. & Soto, P. & Jiménez, C. & Rivera, W., 2014. "Experimental assessment of an absorption cooling system operating with the ammonia/lithium nitrate mixture," Energy, Elsevier, vol. 78(C), pages 685-692.
    14. Chen, Wei & Xu, Chenbin & Wu, Haibo & Bai, Yang & Li, Zoulu & Zhang, Bin, 2020. "Energy and exergy analyses of a novel hybrid system consisting of a phosphoric acid fuel cell and a triple-effect compression–absorption refrigerator with [mmim]DMP/CH3OH as working fluid," Energy, Elsevier, vol. 195(C).
    15. Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
    16. Arshadi, M. & Taghvaei, H. & Abdolmaleki, M.K. & Lee, M. & Eskandarloo, H. & Abbaspourrad, A., 2019. "Carbon dioxide absorption in water/nanofluid by a symmetric amine-based nanodendritic adsorbent," Applied Energy, Elsevier, vol. 242(C), pages 1562-1572.
    17. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "An overview of ammonia-based absorption chillers and heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 681-707.
    18. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    19. Sina Eslami & Behnam Farhangdoost & Hamidreza Shahverdi & Mohsen Mohammadi, 2021. "Surface grafting of silica nanoparticles using 3‐aminopropyl (triethoxysilane) to improve the CO2 absorption and enhance the gas consumption during the CO2 hydrate formation," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 939-953, October.
    20. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:519-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.