IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp420-427.html
   My bibliography  Save this article

Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol

Author

Listed:
  • Brand, Steffen
  • Hardi, Flabianus
  • Kim, Jaehoon
  • Suh, Dong Jin

Abstract

This study investigates the influence of heating and cooling rate on liquefaction of lignocellulosic biomass in subH2O (subcritical water) or in scEtOH (supercritical ethanol), in dependency of final reaction temperatures (250–350 °C) and residence times (1–40 min). The heating rate has been identified as a crucial parameter in the subH2O-based liquefaction, whereas it has marginal influence in the scEtOH-based liquefaction. Detailed characterization of gas, liquid and solid products enables to identify the individual reaction steps, which results in a new insight into the reaction mechanisms, depending on the liquefaction solvents and conditions. Similar to fast pyrolysis, hydrothermal liquefaction consists of beneficial primary reactions (pyrolytic & hydrolytic degradation) and non-beneficial secondary reactions i.e. recombination and secondary cracking. In scEtOH, biomass was decomposed by pyrolysis and alcoholysis at relatively high reaction temperatures while the recombination of reaction intermediates are retarded by the unique reactions of scEtOH such as hydrogen donation and hydroxylalkylation.

Suggested Citation

  • Brand, Steffen & Hardi, Flabianus & Kim, Jaehoon & Suh, Dong Jin, 2014. "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol," Energy, Elsevier, vol. 68(C), pages 420-427.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:420-427
    DOI: 10.1016/j.energy.2014.02.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214002205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Chongli & Wei, Xiaomin, 2004. "A comparative experimental study on the liquefaction of wood," Energy, Elsevier, vol. 29(11), pages 1731-1741.
    2. Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
    3. Sun, Peiqin & Heng, Mingxing & Sun, Shaohui & Chen, Junwu, 2010. "Direct liquefaction of paulownia in hot compressed water: Influence of catalysts," Energy, Elsevier, vol. 35(12), pages 5421-5429.
    4. Akhtar, Javaid & Amin, Nor Aishah Saidina, 2011. "A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1615-1624, April.
    5. Qu, Yixin & Wei, Xiaomin & Zhong, Chongli, 2003. "Experimental study on the direct liquefaction of Cunninghamia lanceolata in water," Energy, Elsevier, vol. 28(7), pages 597-606.
    6. Zhang, Linghong & Champagne, Pascale & (Charles) Xu, Chunbao, 2011. "Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water," Energy, Elsevier, vol. 36(4), pages 2142-2150.
    7. Shuping, Zou & Yulong, Wu & Mingde, Yang & Kaleem, Imdad & Chun, Li & Tong, Junmao, 2010. "Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake," Energy, Elsevier, vol. 35(12), pages 5406-5411.
    8. Brand, Steffen & Susanti, Ratna Frida & Kim, Seok Ki & Lee, Hong-shik & Kim, Jaehoon & Sang, Byung-In, 2013. "Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters," Energy, Elsevier, vol. 59(C), pages 173-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isa, Khairuddin Md & Abdullah, Tuan Amran Tuan & Ali, Umi Fazara Md, 2018. "Hydrogen donor solvents in liquefaction of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1259-1268.
    2. Je-Lueng Shie & Wei-Sheng Yang & Yi-Ru Liau & Tian-Hui Liau & Hong-Ren Yang, 2021. "Subcritical Hydrothermal Co-Liquefaction of Process Rejects at a Wastepaper-Based Paper Mill with Waste Soybean Oil," Energies, MDPI, vol. 14(9), pages 1-14, April.
    3. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Thiruvenkadam, Selvakumar & Izhar, Shamsul & Yoshida, Hiroyuki & Danquah, Michael K. & Harun, Razif, 2015. "Process application of Subcritical Water Extraction (SWE) for algal bio-products and biofuels production," Applied Energy, Elsevier, vol. 154(C), pages 815-828.
    5. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    6. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    7. Muhammad Usman & Shuo Cheng & Sasipa Boonyubol & Jeffrey S. Cross, 2023. "Evaluating Green Solvents for Bio-Oil Extraction: Advancements, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(15), pages 1-45, August.
    8. Wu, Xiao-Fei & Yin, Shuang-Shuang & Zhou, Qian & Li, Ming-Fei & Peng, Feng & Xiao, Xiao, 2019. "Subcritical liquefaction of lignocellulose for the production of bio-oils in ethanol/water system," Renewable Energy, Elsevier, vol. 136(C), pages 865-872.
    9. Kandasamy, Sabariswaran & Zhang, Bo & He, Zhixia & Chen, Haitao & Feng, Huan & Wang, Qian & Wang, Bin & Ashokkumar, Veeramuthu & Siva, Subramanian & Bhuvanendran, Narayanamoorthy & Krishnamoorthi, M., 2020. "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, Elsevier, vol. 190(C).
    10. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Knez, Ž. & Markočič, E. & Leitgeb, M. & Primožič, M. & Knez Hrnčič, M. & Škerget, M., 2014. "Industrial applications of supercritical fluids: A review," Energy, Elsevier, vol. 77(C), pages 235-243.
    12. Ahmad, Nabeel & Ahmad, Nauman & Maafa, Ibrahim M. & Ahmed, Usama & Akhter, Parveen & Shehzad, Nasir & Amjad, Um-e-salma & Hussain, Murid & Javaid, Momina, 2020. "Conversion of poly-isoprene based rubber to value-added chemicals and liquid fuel via ethanolysis: Effect of operating parameters on product quality and quantity," Energy, Elsevier, vol. 191(C).
    13. Chen, Congjin & Zhu, Jingxian & Jia, Shuang & Mi, Shuai & Tong, Zhangfa & Li, Zhixia & Li, Mingfei & Zhang, Yanjuan & Hu, Yuhua & Huang, Zuqiang, 2018. "Effect of ethanol on Mulberry bark hydrothermal liquefaction and bio-oil chemical compositions," Energy, Elsevier, vol. 162(C), pages 460-475.
    14. Manaenkov, Oleg V. & Ratkevich, Ekaterina A. & Kislitsa, Olga V. & Lawson, Bret & Morgan, David Gene & Stepacheva, Antonina A. & Matveeva, Valentina G. & Sulman, Mikhail G. & Sulman, Esther M. & Brons, 2018. "Magnetically recoverable catalysts for the conversion of inulin to mannitol," Energy, Elsevier, vol. 154(C), pages 1-6.
    15. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    16. Yang, Ke & Wu, Kai & Zhang, Huiyan, 2022. "Machine learning prediction of the yield and oxygen content of bio-oil via biomass characteristics and pyrolysis conditions," Energy, Elsevier, vol. 254(PB).
    17. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    18. Brand, Steffen & Kim, Jaehoon, 2015. "Liquefaction of major lignocellulosic biomass constituents in supercritical ethanol," Energy, Elsevier, vol. 80(C), pages 64-74.
    19. Fang, Peiwen & Gong, Zhiqiang & Wang, Zhenbo & Wang, Zhentong & Meng, Fanzhi, 2019. "Study on combustion and emission characteristics of microalgae and its extraction residue with TG-MS," Renewable Energy, Elsevier, vol. 140(C), pages 884-894.
    20. Ong, Benjamin H.Y. & Walmsley, Timothy G. & Atkins, Martin J. & Varbanov, Petar S. & Walmsley, Michael R.W., 2019. "A heat- and mass-integrated design of hydrothermal liquefaction process co-located with a Kraft pulp mill," Energy, Elsevier, vol. 189(C).
    21. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    22. Li, Bingshuo & Yang, Tianhua & Li, Rundong & Kai, Xingping, 2020. "Co-generation of liquid biofuels from lignocellulose by integrated biochemical and hydrothermal liquefaction process," Energy, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Zhe & Toor, Saqib Sohail & Rosendahl, Lasse & Yu, Donghong & Chen, Guanyi, 2015. "Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw," Energy, Elsevier, vol. 80(C), pages 284-292.
    2. Dimitriadis, Athanasios & Bezergianni, Stella, 2017. "Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 113-125.
    3. Huang, Hua-jun & Yuan, Xing-zhong & Zhu, Hui-na & Li, Hui & Liu, Yan & Wang, Xue-li & Zeng, Guang-ming, 2013. "Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge," Energy, Elsevier, vol. 56(C), pages 52-60.
    4. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    5. Isa, Khairuddin Md & Abdullah, Tuan Amran Tuan & Ali, Umi Fazara Md, 2018. "Hydrogen donor solvents in liquefaction of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1259-1268.
    6. Déniel, Maxime & Haarlemmer, Geert & Roubaud, Anne & Weiss-Hortala, Elsa & Fages, Jacques, 2016. "Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1632-1652.
    7. Li, Qingyin & Yuan, Xiangzhou & Hu, Xun & Meers, Erik & Ong, Hwai Chyuan & Chen, Wei-Hsin & Duan, Peigao & Zhang, Shicheng & Lee, Ki Bong & Ok, Yong Sik, 2022. "Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Leng, Lijian & Yuan, Xingzhong & Chen, Xiaohong & Huang, Huajun & Wang, Hou & Li, Hui & Zhu, Ren & Li, Shanxing & Zeng, Guangming, 2015. "Characterization of liquefaction bio-oil from sewage sludge and its solubilization in diesel microemulsion," Energy, Elsevier, vol. 82(C), pages 218-228.
    10. Nizamuddin, Sabzoi & Baloch, Humair Ahmed & Griffin, G.J. & Mubarak, N.M. & Bhutto, Abdul Waheed & Abro, Rashid & Mazari, Shaukat Ali & Ali, Brahim Si, 2017. "An overview of effect of process parameters on hydrothermal carbonization of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1289-1299.
    11. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    12. Brand, Steffen & Susanti, Ratna Frida & Kim, Seok Ki & Lee, Hong-shik & Kim, Jaehoon & Sang, Byung-In, 2013. "Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters," Energy, Elsevier, vol. 59(C), pages 173-182.
    13. Gao, Ying & Wang, Xian-Hua & Yang, Hai-Ping & Chen, Han-Ping, 2012. "Characterization of products from hydrothermal treatments of cellulose," Energy, Elsevier, vol. 42(1), pages 457-465.
    14. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
    15. Fortier, Marie-Odile P. & Roberts, Griffin W. & Stagg-Williams, Susan M. & Sturm, Belinda S.M., 2014. "Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 122(C), pages 73-82.
    16. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Werle, Sebastian, 2023. "An experimental investigation and process optimization of the oxidative liquefaction process as the recycling method of the end-of-life wind turbine blades," Renewable Energy, Elsevier, vol. 211(C), pages 269-278.
    17. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    18. Guo, Yang & Yeh, Thomas & Song, Wenhan & Xu, Donghai & Wang, Shuzhong, 2015. "A review of bio-oil production from hydrothermal liquefaction of algae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 776-790.
    19. Yuan, Xingzhong & Wang, Jingyu & Zeng, Guangming & Huang, Huajun & Pei, Xiaokai & Li, Hui & Liu, Zhifeng & Cong, Minghui, 2011. "Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents," Energy, Elsevier, vol. 36(11), pages 6406-6412.
    20. Kaur, Ravneet & Gera, Poonam & Jha, Mithilesh Kumar & Bhaskar, Thallada, 2019. "Reaction parameters effect on hydrothermal liquefaction of castor (Ricinus Communis) residue for energy and valuable hydrocarbons recovery," Renewable Energy, Elsevier, vol. 141(C), pages 1026-1041.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:420-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.