IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip1p1259-1268.html
   My bibliography  Save this article

Hydrogen donor solvents in liquefaction of biomass: A review

Author

Listed:
  • Isa, Khairuddin Md
  • Abdullah, Tuan Amran Tuan
  • Ali, Umi Fazara Md

Abstract

The environmental impact of global warming, caused by greenhouse gases has also fuelled the needs to utilise biomass, as its energy utilisation creates less environmental pollution and fewer health risks than fossil fuel combustion. Liquefaction of biomass using hydrogen donor solvents is a promising route to obtain clean biofuel using various solvents at moderate to high temperature (250–460°C) and pressure (150–320bar). Solvents such as sub-and supercritical water, alcohol, decalin, glycerol and tetralin can be used as potential hydrogen donor to enhance liquid oil yield with a reduced of oxygen content. Supercritical water with its excellent transport properties as well as hydrogen donor capability leads to hydrothermal decomposition of biomass and enhancing various compounds depending upon operating parameters. The selection of alcohol as a solvent related to the action of hydrogen donor and to its alkylating ability. The hydrogen donor solvents provide an alternative to hydrogen gas as a reducing gas. The advantage of using hydrogen donor solvent is to stabilise the free radical in the biomass liquefaction and yielding a higher product conversion. Compared with non-hydrogen donor solvents, hydrogen donor solvents such as tetralin and decalin show significant improvement not only in conversion and product distribution to liquid but also on the quality of bio-oil (oxygen content) due to the improvement of hydrogenation and hydrocracking reactions with inhibition of polycondensation. The advantage of hydrogen donor solvents over the molecular hydrogen due to a lower strength bonding of C-H as compared to H-H bond. A review on performances of water, alcohols and other hydrogen donor solvents in liquefaction of biomass has been made. The yield of hydrogen donated in the reaction has also been reported.

Suggested Citation

  • Isa, Khairuddin Md & Abdullah, Tuan Amran Tuan & Ali, Umi Fazara Md, 2018. "Hydrogen donor solvents in liquefaction of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1259-1268.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:1259-1268
    DOI: 10.1016/j.rser.2017.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117305087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Hua-jun & Yuan, Xing-zhong & Zhu, Hui-na & Li, Hui & Liu, Yan & Wang, Xue-li & Zeng, Guang-ming, 2013. "Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge," Energy, Elsevier, vol. 56(C), pages 52-60.
    2. Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
    3. Brand, Steffen & Hardi, Flabianus & Kim, Jaehoon & Suh, Dong Jin, 2014. "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol," Energy, Elsevier, vol. 68(C), pages 420-427.
    4. Sun, Peiqin & Heng, Mingxing & Sun, Shaohui & Chen, Junwu, 2010. "Direct liquefaction of paulownia in hot compressed water: Influence of catalysts," Energy, Elsevier, vol. 35(12), pages 5421-5429.
    5. Luo, Siyi & Feng, Yu, 2016. "The production of hydrogen-rich gas by wet sludge pyrolysis using waste heat from blast-furnace slag," Energy, Elsevier, vol. 113(C), pages 845-851.
    6. Xiu, Shuangning & Shahbazi, Abolghasem, 2012. "Bio-oil production and upgrading research: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4406-4414.
    7. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    8. Brand, Steffen & Kim, Jaehoon, 2015. "Liquefaction of major lignocellulosic biomass constituents in supercritical ethanol," Energy, Elsevier, vol. 80(C), pages 64-74.
    9. Akhtar, Javaid & Amin, Nor Aishah Saidina, 2011. "A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1615-1624, April.
    10. Dimitriadis, Athanasios & Bezergianni, Stella, 2017. "Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 113-125.
    11. Abbasi, Tasneem & Abbasi, S.A., 2010. "Biomass energy and the environmental impacts associated with its production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 919-937, April.
    12. Luo, Siyi & Fu, Jie & Zhou, Yangmin & Yi, Chuijie, 2017. "The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag," Renewable Energy, Elsevier, vol. 101(C), pages 1030-1036.
    13. Beis, S.H. & Onay, Ö. & Koçkar, Ö.M., 2002. "Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions," Renewable Energy, Elsevier, vol. 26(1), pages 21-32.
    14. Shuping, Zou & Yulong, Wu & Mingde, Yang & Kaleem, Imdad & Chun, Li & Tong, Junmao, 2010. "Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake," Energy, Elsevier, vol. 35(12), pages 5406-5411.
    15. Qian, Yejian & Zuo, Chengji & Tan, Jian & He, Jianhui, 2007. "Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass," Energy, Elsevier, vol. 32(3), pages 196-202.
    16. Yuan, Xingzhong & Wang, Jingyu & Zeng, Guangming & Huang, Huajun & Pei, Xiaokai & Li, Hui & Liu, Zhifeng & Cong, Minghui, 2011. "Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents," Energy, Elsevier, vol. 36(11), pages 6406-6412.
    17. Brand, Steffen & Susanti, Ratna Frida & Kim, Seok Ki & Lee, Hong-shik & Kim, Jaehoon & Sang, Byung-In, 2013. "Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters," Energy, Elsevier, vol. 59(C), pages 173-182.
    18. Williams, Paul T. & Besler, Serpil, 1996. "The influence of temperature and heating rate on the slow pyrolysis of biomass," Renewable Energy, Elsevier, vol. 7(3), pages 233-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Hua-jun & Yuan, Xing-zhong & Zhu, Hui-na & Li, Hui & Liu, Yan & Wang, Xue-li & Zeng, Guang-ming, 2013. "Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge," Energy, Elsevier, vol. 56(C), pages 52-60.
    2. Leng, Lijian & Yuan, Xingzhong & Chen, Xiaohong & Huang, Huajun & Wang, Hou & Li, Hui & Zhu, Ren & Li, Shanxing & Zeng, Guangming, 2015. "Characterization of liquefaction bio-oil from sewage sludge and its solubilization in diesel microemulsion," Energy, Elsevier, vol. 82(C), pages 218-228.
    3. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Brand, Steffen & Hardi, Flabianus & Kim, Jaehoon & Suh, Dong Jin, 2014. "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol," Energy, Elsevier, vol. 68(C), pages 420-427.
    5. Zhu, Zhe & Toor, Saqib Sohail & Rosendahl, Lasse & Yu, Donghong & Chen, Guanyi, 2015. "Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw," Energy, Elsevier, vol. 80(C), pages 284-292.
    6. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Déniel, Maxime & Haarlemmer, Geert & Roubaud, Anne & Weiss-Hortala, Elsa & Fages, Jacques, 2016. "Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1632-1652.
    8. Li, Qingyin & Yuan, Xiangzhou & Hu, Xun & Meers, Erik & Ong, Hwai Chyuan & Chen, Wei-Hsin & Duan, Peigao & Zhang, Shicheng & Lee, Ki Bong & Ok, Yong Sik, 2022. "Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    10. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    11. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    12. Chen, Haitao & He, Zhixia & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Wang, Bin, 2019. "Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin," Energy, Elsevier, vol. 179(C), pages 1103-1113.
    13. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    14. Li, Bingshuo & Yang, Tianhua & Li, Rundong & Kai, Xingping, 2020. "Co-generation of liquid biofuels from lignocellulose by integrated biochemical and hydrothermal liquefaction process," Energy, Elsevier, vol. 200(C).
    15. No, Soo-Young, 2014. "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1108-1125.
    16. Dimitriadis, Athanasios & Bezergianni, Stella, 2017. "Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 113-125.
    17. Yan, Shuo & Xia, Dehong & Zhang, Xinru & Liu, Xiangjun, 2022. "Synergistic mechanism of enhanced biocrude production during hydrothermal co-liquefaction of biomass model components: A molecular dynamics simulation," Energy, Elsevier, vol. 255(C).
    18. Collett, James R. & Billing, Justin M. & Meyer, Pimphan A. & Schmidt, Andrew J. & Remington, A. Brook & Hawley, Erik R. & Hofstad, Beth A. & Panisko, Ellen A. & Dai, Ziyu & Hart, Todd R. & Santosa, Da, 2019. "Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover," Applied Energy, Elsevier, vol. 233, pages 840-853.
    19. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    20. Lai, Fa-ying & Chang, Yan-chao & Huang, Hua-jun & Wu, Guo-qiang & Xiong, Jiang-bo & Pan, Zi-qian & Zhou, Chun-fei, 2018. "Liquefaction of sewage sludge in ethanol-water mixed solvents for bio-oil and biochar products," Energy, Elsevier, vol. 148(C), pages 629-641.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:1259-1268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.