IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i11p1731-1741.html
   My bibliography  Save this article

A comparative experimental study on the liquefaction of wood

Author

Listed:
  • Zhong, Chongli
  • Wei, Xiaomin

Abstract

Aqueous liquefaction of Cunninghamia lanceolata, Fraxinus mandshurica, Pinus massoniana Lamb. and Populus tomentosa Carr. was carried out in an autoclave in the reaction temperature range of 553.15–633.15 K, where both non-catalytic and catalytic liquefaction were performed. The experimental results show that the lignin content has a large effect on the yield of liquefaction products in the non-catalytic liquefaction. The addition of K2CO3 as a catalyst can significantly reduce the residue yield for all the woods tested, while its effect on the heavy oil yield becomes weaker with decreasing amounts of lignin. The present study shows that a heavy oil yield of 30% coupled with a residue yield of less than 10% can be obtained for all the wood samples tested in the catalytic liquefaction.

Suggested Citation

  • Zhong, Chongli & Wei, Xiaomin, 2004. "A comparative experimental study on the liquefaction of wood," Energy, Elsevier, vol. 29(11), pages 1731-1741.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:11:p:1731-1741
    DOI: 10.1016/j.energy.2004.03.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204001768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qu, Yixin & Wei, Xiaomin & Zhong, Chongli, 2003. "Experimental study on the direct liquefaction of Cunninghamia lanceolata in water," Energy, Elsevier, vol. 28(7), pages 597-606.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brand, Steffen & Hardi, Flabianus & Kim, Jaehoon & Suh, Dong Jin, 2014. "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol," Energy, Elsevier, vol. 68(C), pages 420-427.
    2. Brand, Steffen & Susanti, Ratna Frida & Kim, Seok Ki & Lee, Hong-shik & Kim, Jaehoon & Sang, Byung-In, 2013. "Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters," Energy, Elsevier, vol. 59(C), pages 173-182.
    3. Gao, Ying & Wang, Xian-Hua & Yang, Hai-Ping & Chen, Han-Ping, 2012. "Characterization of products from hydrothermal treatments of cellulose," Energy, Elsevier, vol. 42(1), pages 457-465.
    4. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Yuan, X.Z. & Li, H. & Zeng, G.M. & Tong, J.Y. & Xie, W., 2007. "Sub- and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture," Energy, Elsevier, vol. 32(11), pages 2081-2088.
    6. Qian, Yejian & Zuo, Chengji & Tan, Jian & He, Jianhui, 2007. "Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass," Energy, Elsevier, vol. 32(3), pages 196-202.
    7. Li, Wei-Gang & Zhao, Wei & Liu, Hao-Miao & Ao, Lei & Liu, Kai-Shuai & Guan, Yin-Shuang & Zai, Shi-Feng & Chen, Shang-Long & Zong, Zhi-Min & Wei, Xian-Yong, 2018. "Supercritical ethanolysis of wheat stalk over calcium oxide," Renewable Energy, Elsevier, vol. 120(C), pages 300-305.
    8. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Werle, Sebastian, 2023. "An experimental investigation and process optimization of the oxidative liquefaction process as the recycling method of the end-of-life wind turbine blades," Renewable Energy, Elsevier, vol. 211(C), pages 269-278.
    9. Chen, Wei-Hsin & Lin, Yu-Ying & Liu, Hsuan-Cheng & Baroutian, Saeid, 2020. "Optimization of food waste hydrothermal liquefaction by a two-step process in association with a double analysis," Energy, Elsevier, vol. 199(C).
    10. Younas, Rafia & Hao, Shilai & Zhang, Liwu & Zhang, Shicheng, 2017. "Hydrothermal liquefaction of rice straw with NiO nanocatalyst for bio-oil production," Renewable Energy, Elsevier, vol. 113(C), pages 532-545.
    11. Feng, Huan & He, Zhixia & Zhang, Bo & Chen, Haitao & Wang, Qian & Kandasamy, Sabariswaran, 2019. "Synergistic bio-oil production from hydrothermal co-liquefaction of Spirulina platensis and α-Cellulose," Energy, Elsevier, vol. 174(C), pages 1283-1291.
    12. Zhu, Zhe & Toor, Saqib Sohail & Rosendahl, Lasse & Yu, Donghong & Chen, Guanyi, 2015. "Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw," Energy, Elsevier, vol. 80(C), pages 284-292.
    13. Dimitriadis, Athanasios & Bezergianni, Stella, 2017. "Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 113-125.
    14. Zhang, Linghong & Champagne, Pascale & (Charles) Xu, Chunbao, 2011. "Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water," Energy, Elsevier, vol. 36(4), pages 2142-2150.
    15. Sun, Peiqin & Heng, Mingxing & Sun, Shaohui & Chen, Junwu, 2010. "Direct liquefaction of paulownia in hot compressed water: Influence of catalysts," Energy, Elsevier, vol. 35(12), pages 5421-5429.
    16. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    18. Déniel, Maxime & Haarlemmer, Geert & Roubaud, Anne & Weiss-Hortala, Elsa & Fages, Jacques, 2016. "Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1632-1652.
    19. Yuan, Chuan & Wang, Shuang & Cao, Bin & Hu, Yamin & Abomohra, Abd El-Fatah & Wang, Qian & Qian, Lili & Liu, Lu & Liu, Xinlin & He, Zhixia & Sun, Chaoqun & Feng, Yongqiang & Zhang, Bo, 2019. "Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production," Energy, Elsevier, vol. 173(C), pages 413-422.
    20. Hardi, Flabianus & Mäkelä, Mikko & Yoshikawa, Kunio, 2017. "Non-catalytic hydrothermal liquefaction of pine sawdust using experimental design: Material balances and products analysis," Applied Energy, Elsevier, vol. 204(C), pages 1026-1034.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:11:p:1731-1741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.