IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5852-d1212393.html
   My bibliography  Save this article

Evaluating Green Solvents for Bio-Oil Extraction: Advancements, Challenges, and Future Perspectives

Author

Listed:
  • Muhammad Usman

    (Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan)

  • Shuo Cheng

    (Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan)

  • Sasipa Boonyubol

    (Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan)

  • Jeffrey S. Cross

    (Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan)

Abstract

The quest for sustainable and environmentally friendly fuel feedstocks has led to the exploration of green solvents for the extraction of bio-oil from various biomass sources. This review paper provides a comprehensive analysis of the challenges and future research outlooks for different categories of green extraction solvents, including bio-based solvents, water-based solvents, supercritical fluids, and deep eutectic solvents (DES). The background of each solvent category is discussed, highlighting their potential advantages and limitations. Challenges such as biomass feedstock sourcing, cost fluctuations, solvent properties variability, limited compatibility, solute solubility, high costs, and potential toxicity are identified and examined in detail. To overcome these challenges, future research should focus on alternative and abundant feedstock sources, the development of improved solubility and separation techniques, optimization of process parameters, cost-effective equipment design, standardization of DES compositions, and comprehensive toxicological studies. By addressing these challenges and advancing research in these areas, the potential of green extraction solvents can be further enhanced, promoting their widespread adoption and contributing to more sustainable and environmentally friendly industrial processes.

Suggested Citation

  • Muhammad Usman & Shuo Cheng & Sasipa Boonyubol & Jeffrey S. Cross, 2023. "Evaluating Green Solvents for Bio-Oil Extraction: Advancements, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(15), pages 1-45, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5852-:d:1212393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5852/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5852/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Wan-Ting & Zhang, Yuanhui & Zhang, Jixiang & Schideman, Lance & Yu, Guo & Zhang, Peng & Minarick, Mitchell, 2014. "Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil," Applied Energy, Elsevier, vol. 128(C), pages 209-216.
    2. Han Zhou & Shaoyuan Bai & Yanan Zhang & Dandan Xu & Mei Wang, 2022. "Recent Advances in Ionic Liquids and Ionic Liquid-Functionalized Graphene: Catalytic Application and Environmental Remediation," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    3. Moon, Myounghoon & Park, Won-Kun & Lee, Soo Youn & Hwang, Kyung-Ran & Lee, Sangmin & Kim, Min-Sik & Kim, Bolam & Oh, You-Kwan & Lee, Jin-Suk, 2022. "Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Zeb, Hassan & Choi, Jaeyeon & Kim, Yunje & Kim, Jaehoon, 2017. "A new role of supercritical ethanol in macroalgae liquefaction (Saccharina japonica): Understanding ethanol participation, yield, and energy efficiency," Energy, Elsevier, vol. 118(C), pages 116-126.
    5. Li, Bin & Song, Mengge & Xie, Xing & Wei, Juntao & Xu, Deliang & Ding, Kuan & Huang, Yong & Zhang, Shu & Hu, Xun & Zhang, Shihong & Liu, Dongjing, 2023. "Oxidative fast pyrolysis of biomass in a quartz tube fluidized bed reactor: Effect of oxygen equivalence ratio," Energy, Elsevier, vol. 270(C).
    6. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Wolf Maciel, Maria Regina & Maciel Filho, Rubens, 2019. "Comparison of several methods for effective lipid extraction from wet microalgae using green solvents," Renewable Energy, Elsevier, vol. 143(C), pages 130-141.
    7. de Jesus, Sérgio S. & Filho, Rubens Maciel, 2020. "Recent advances in lipid extraction using green solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Brand, Steffen & Hardi, Flabianus & Kim, Jaehoon & Suh, Dong Jin, 2014. "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol," Energy, Elsevier, vol. 68(C), pages 420-427.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    2. Thiruvenkadam, Selvakumar & Izhar, Shamsul & Yoshida, Hiroyuki & Danquah, Michael K. & Harun, Razif, 2015. "Process application of Subcritical Water Extraction (SWE) for algal bio-products and biofuels production," Applied Energy, Elsevier, vol. 154(C), pages 815-828.
    3. Wu, Xiao-Fei & Yin, Shuang-Shuang & Zhou, Qian & Li, Ming-Fei & Peng, Feng & Xiao, Xiao, 2019. "Subcritical liquefaction of lignocellulose for the production of bio-oils in ethanol/water system," Renewable Energy, Elsevier, vol. 136(C), pages 865-872.
    4. Ahmad, Nabeel & Ahmad, Nauman & Maafa, Ibrahim M. & Ahmed, Usama & Akhter, Parveen & Shehzad, Nasir & Amjad, Um-e-salma & Hussain, Murid & Javaid, Momina, 2020. "Conversion of poly-isoprene based rubber to value-added chemicals and liquid fuel via ethanolysis: Effect of operating parameters on product quality and quantity," Energy, Elsevier, vol. 191(C).
    5. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    6. Zhou, Yingdong & Chen, Yaguang & Li, Mingyu & Hu, Changwei, 2020. "Production of high-quality biofuel via ethanol liquefaction of pretreated natural microalgae," Renewable Energy, Elsevier, vol. 147(P1), pages 293-301.
    7. Song, Xueyi & Yuan, Junjie & Yang, Chen & Deng, Gaofeng & Wang, Zhichao & Gao, Jubao, 2023. "Carbon dioxide separation performance evaluation of amine-based versus choline-based deep eutectic solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    9. Binhweel, Fozy & Pyar, Hassan & Senusi, Wardah & Shaah, Marwan Abdulhakim & Hossain, Md Sohrab & Ahmad, Mardiana Idayu, 2023. "Utilization of marine ulva lactuca seaweed and freshwater azolla filiculoides macroalgae feedstocks toward biodiesel production: Kinetics, thermodynamics, and optimization studies," Renewable Energy, Elsevier, vol. 205(C), pages 717-730.
    10. Jaiswal, Krishna Kumar & Dutta, Swapnamoy & Banerjee, Ishita & Jaiswal, Km Smriti & Renuka, Nirmal & Ratha, Sachitra Kumar & Jaiswal, Amit K., 2024. "Valorization of fish processing industry waste for biodiesel production: Opportunities, challenges, and technological perspectives," Renewable Energy, Elsevier, vol. 220(C).
    11. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    12. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    13. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Nugroho Adi Sasongko & Ryozo Noguchi & Junko Ito & Mikihide Demura & Sosaku Ichikawa & Mitsutoshi Nakajima & Makoto M. Watanabe, 2018. "Engineering Study of a Pilot Scale Process Plant for Microalgae-Oil Production Utilizing Municipal Wastewater and Flue Gases: Fukushima Pilot Plant," Energies, MDPI, vol. 11(7), pages 1-24, June.
    15. Hwang, Jae-Hoon & Church, Jared & Lim, Jaewon & Lee, Woo Hyoung, 2018. "Photosynthetic biohydrogen production in a wastewater environment and its potential as renewable energy," Energy, Elsevier, vol. 149(C), pages 222-229.
    16. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Siddiqui, M.T.H. & Baloch, Humair Ahmed & Nizamuddin, Sabzoi & Mubarak, N.M. & Mazari, Shaukat Ali & Griffin, G.J. & Srinivasan, Madapusi, 2021. "Dual-application of novel magnetic carbon nanocomposites as catalytic liquefaction for bio-oil synthesis and multi-heavy metal adsorption," Renewable Energy, Elsevier, vol. 172(C), pages 1103-1119.
    18. Brand, Steffen & Kim, Jaehoon, 2015. "Liquefaction of major lignocellulosic biomass constituents in supercritical ethanol," Energy, Elsevier, vol. 80(C), pages 64-74.
    19. Wojciech Jerzak & Esther Acha & Bin Li, 2024. "Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis," Energies, MDPI, vol. 17(20), pages 1-31, October.
    20. Ong, Benjamin H.Y. & Walmsley, Timothy G. & Atkins, Martin J. & Varbanov, Petar S. & Walmsley, Michael R.W., 2019. "A heat- and mass-integrated design of hydrothermal liquefaction process co-located with a Kraft pulp mill," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5852-:d:1212393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.