IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v51y2013icp237-242.html
   My bibliography  Save this article

Pd-based composite membrane and its high-pressure module for pre-combustion CO2 capture

Author

Listed:
  • Ryi, Shin-Kun
  • Lee, Chun-Boo
  • Lee, Sung-Wook
  • Park, Jong-Soo

Abstract

This study investigates configuration of a module for withstanding high pressure and temperature for CO2 capture from a coal gasifier. In order to increase the durability of the module at high pressure and temperature, a flange-type unit-cell module was installed in a high-pressure chamber. Hydrogen permeation and N2 leakage tests showed that H2/N2 selectivity remained at ∼4000 after ∼300 h at a pressure difference of 2000 kPa (∼20 bar) and 673 K. A CO2 capturing test was carried out at 673 K and a pressure difference of 2000 kPa with a 40% CO2 + 60% H2 feed gas mixture, which is similar to the composition in a coal gasifier after shift reaction and H2O removal. It was shown that CO2 could be enriched up to 78–95% with a hydrogen recovery ratio of 82–97% when the feed flow rate was 0.05–0.17 Nm3 h−1 with a membrane surface area of 16. 6 cm2.

Suggested Citation

  • Ryi, Shin-Kun & Lee, Chun-Boo & Lee, Sung-Wook & Park, Jong-Soo, 2013. "Pd-based composite membrane and its high-pressure module for pre-combustion CO2 capture," Energy, Elsevier, vol. 51(C), pages 237-242.
  • Handle: RePEc:eee:energy:v:51:y:2013:i:c:p:237-242
    DOI: 10.1016/j.energy.2012.12.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213000054
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.12.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryi, Shin-Kun & Lee, Chun-Boo & Lee, Sung-Wook & Hwang, Kyung-Ran & Park, Jong-Soo, 2012. "Hydrogen recovery from ethylene mixture with PD-AU composite membrane," Energy, Elsevier, vol. 47(1), pages 3-10.
    2. Bounaceur, Roda & Lape, Nancy & Roizard, Denis & Vallieres, Cécile & Favre, Eric, 2006. "Membrane processes for post-combustion carbon dioxide capture: A parametric study," Energy, Elsevier, vol. 31(14), pages 2556-2570.
    3. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Sung-Wook & Park, Jong-Soo & Lee, Chun-Boo & Lee, Dong-Wook & Kim, Hakjoo & Ra, Ho Won & Kim, Sung-Hyun & Ryi, Shin-Kun, 2014. "H2 recovery and CO2 capture after water–gas shift reactor using synthesis gas from coal gasification," Energy, Elsevier, vol. 66(C), pages 635-642.
    2. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    3. Song, Chunfeng & Kitamura, Yutaka & Li, Shuhong, 2014. "Energy analysis of the cryogenic CO2 capture process based on Stirling coolers," Energy, Elsevier, vol. 65(C), pages 580-589.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I., 2012. "A study of influence of acoustic excitation on carbon dioxide capture by a droplet," Energy, Elsevier, vol. 37(1), pages 311-321.
    2. Kotowicz, Janusz & Chmielniak, Tadeusz & Janusz-Szymańska, Katarzyna, 2010. "The influence of membrane CO2 separation on the efficiency of a coal-fired power plant," Energy, Elsevier, vol. 35(2), pages 841-850.
    3. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    4. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    5. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    6. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    7. Gomes, Gabriel Lourenço & Szklo, Alexandre & Schaeffer, Roberto, 2009. "The impact of CO2 taxation on the configuration of new refineries: An application to Brazil," Energy Policy, Elsevier, vol. 37(12), pages 5519-5529, December.
    8. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    9. Aydin, Gokhan & Karakurt, Izzet & Aydiner, Kerim, 2010. "Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety," Energy Policy, Elsevier, vol. 38(9), pages 5072-5080, September.
    10. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    11. Wu Haibo & Liu Zhaohui, 2018. "Economic research relating to a 200 MWe oxy‐fuel combustion power plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 911-919, October.
    12. Chen, Wei-Hsin & Tsai, Ming-Hang & Hung, Chen-I, 2013. "Numerical prediction of CO2 capture process by a single droplet in alkaline spray," Applied Energy, Elsevier, vol. 109(C), pages 125-134.
    13. Tang, YuTing & Ma, XiaoQian & Lai, ZhiYi & Chen, Yong, 2013. "Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China," Energy Policy, Elsevier, vol. 60(C), pages 132-141.
    14. Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015. "CO2-emissions from Norwegian oil and gas extraction," Energy, Elsevier, vol. 90(P2), pages 1956-1966.
    15. Fan, Junming & Zhu, Lin & Hong, Hui & Jiang, Qiongqiong & Jin, Hongguang, 2017. "A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven powe," Energy, Elsevier, vol. 119(C), pages 1171-1180.
    16. Vahid Mortezaeikia & Omid Tavakoli & Reza Yegani & Mohammadali Faramarzi, 2016. "Cyanobacterial CO 2 biofixation in batch and semi‐continuous cultivation, using hydrophobic and hydrophilic hollow fiber membrane photobioreactors," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(2), pages 218-231, April.
    17. Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
    18. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    19. Mayr, Bernhard & Prieler, Rene & Demuth, Martin & Hochenauer, Christoph, 2015. "The usability and limits of the steady flamelet approach in oxy-fuel combustions," Energy, Elsevier, vol. 90(P2), pages 1478-1489.
    20. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:51:y:2013:i:c:p:237-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.