IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i8p3608-3616.html
   My bibliography  Save this article

Viability of CCS: A broad-based assessment for Malaysia

Author

Listed:
  • Lai, N.Y.G.
  • Yap, E.H.
  • Lee, C.W.

Abstract

Climate change is fast becoming the major environmental and energy concern worldwide. There is a major dilemma between the continued reliance on fossil fuel for our energy supply and the pressing need to address the problem of greenhouse gas (GHG) emissions from combustion process. This paper reviews the potential for carbon capture and storage (CCS) as a part of the climate change mitigation strategy for the Malaysian electricity sector using a technology assessment framework. The nation's historical trend of high reliance on fossil fuel for its electricity sector makes it a prime candidate for CCS adoption. The suitability and practicality of the technology was reviewed from a broad perspective with consideration of Malaysia-specific conditions. It is apparent from this assessment that CCS has the potential to play an important role in Malaysia's climate change mitigation strategy provided that key criteria are fulfilled.

Suggested Citation

  • Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3608-3616
    DOI: 10.1016/j.rser.2011.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111002218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valentina Bosetti & Carlo Carraro & Romain Duval & Alessandra Sgobbi & Massimo Tavoni, 2009. "The Role of R&D and Technology Diffusion in Climate Change Mitigation: New Perspectives Using the WITCH Model," OECD Economics Department Working Papers 664, OECD Publishing.
    2. Sonja Peterson, 2008. "Greenhouse gas mitigation in developing countries through technology transfer?: a survey of empirical evidence," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(3), pages 283-305, March.
    3. Tully, Stephen, 2006. "The Human Right to Access Electricity," The Electricity Journal, Elsevier, vol. 19(3), pages 30-39, April.
    4. Fankhauser, Samuel & S.J. Tol, Richard, 2005. "On climate change and economic growth," Resource and Energy Economics, Elsevier, vol. 27(1), pages 1-17, January.
    5. Gale, John, 2004. "Geological storage of CO2: What do we know, where are the gaps and what more needs to be done?," Energy, Elsevier, vol. 29(9), pages 1329-1338.
    6. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, October.
    7. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    8. Julien Chevallier, 2010. "Carbon capture and storage (CCS) technologies and economic investment opportunities in the UK," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 12(3), pages 252-265.
    9. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    10. Gibbins, Jon & Chalmers, Hannah, 2008. "Preparing for global rollout: A `developed country first' demonstration programme for rapid CCS deployment," Energy Policy, Elsevier, vol. 36(2), pages 501-507, February.
    11. Rubin, Edward S. & Yeh, Sonia & Antes, Matt & Berkenpas, Michael & Davison, John, 2007. "Use of experience curves to estimate the future cost of power plants with CO2 capture," Institute of Transportation Studies, Working Paper Series qt46x6h0n0, Institute of Transportation Studies, UC Davis.
    12. Othman, M.R. & Martunus & Zakaria, R. & Fernando, W.J.N., 2009. "Strategic planning on carbon capture from coal fired plants in Malaysia and Indonesia: A review," Energy Policy, Elsevier, vol. 37(5), pages 1718-1735, May.
    13. Hang, Leiming & Tu, Meizeng, 2007. "The impacts of energy prices on energy intensity: Evidence from China," Energy Policy, Elsevier, vol. 35(5), pages 2978-2988, May.
    14. Jean-Marc Burniaux & Jean Château & Romain Duval & Stéphanie Jamet, 2008. "The Economics of Climate Change Mitigation: Policies and Options for the Future," OECD Economics Department Working Papers 658, OECD Publishing.
    15. Oh, Tick Hui, 2010. "Carbon capture and storage potential in coal-fired plant in Malaysia--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2697-2709, December.
    16. repec:dau:papers:123456789/4607 is not listed on IDEAS
    17. Riahi, Keywan & Rubin, Edward S. & Schrattenholzer, Leo, 2004. "Prospects for carbon capture and sequestration technologies assuming their technological learning," Energy, Elsevier, vol. 29(9), pages 1309-1318.
    18. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    19. Gale, John & Davison, John, 2004. "Transmission of CO2—safety and economic considerations," Energy, Elsevier, vol. 29(9), pages 1319-1328.
    20. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    21. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economic Development Technological Change, and Growth > Technological Change: Choices and Consequences > Technology Assessment

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    2. Hon Chung Lau & Kai Zhang & Harsha Kumar Bokka & Seeram Ramakrishna, 2022. "A Review of the Status of Fossil and Renewable Energies in Southeast Asia and Its Implications on the Decarbonization of ASEAN," Energies, MDPI, vol. 15(6), pages 1-30, March.
    3. Valentina Kashintseva & Wadim Strielkowski & Justas Streimikis & Tatiana Veynbender, 2018. "Consumer Attitudes towards Industrial CO 2 Capture and Storage Products and Technologies," Energies, MDPI, vol. 11(10), pages 1-14, October.
    4. Jin, S.W. & Li, Y.P. & Nie, S. & Sun, J., 2017. "The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 467-480.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
    2. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2014. "How policy choice affects investment in low-carbon technology: The case of CO2 capture in indirect coal liquefaction in China," Energy, Elsevier, vol. 73(C), pages 670-679.
    3. Abadie, Luis M. & Chamorro, José M., 2008. "European CO2 prices and carbon capture investments," Energy Economics, Elsevier, vol. 30(6), pages 2992-3015, November.
    4. Wu Haibo & Liu Zhaohui, 2018. "Economic research relating to a 200 MWe oxy‐fuel combustion power plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 911-919, October.
    5. Xu, Zhongming & Fang, Chenhao & Ma, Tieju, 2020. "Analysis of China’s olefin industry using a system optimization model considering technological learning and energy consumption reduction," Energy, Elsevier, vol. 191(C).
    6. Meleesa Naughton & Richard C. Darton & Fai Fung, 2012. "Could Climate Change Limit Water Availability for Coal-Fired Electricity Generation with Carbon Capture and Storage? A UK Case Study," Energy & Environment, , vol. 23(2-3), pages 265-282, May.
    7. Alfredo Viskovic & Vladimir Valentic & Vladimir Franki, 2013. "The impac t of carbon prices on CCS investment in South East Europe," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(3), pages 91-120.
    8. Rohlfs, Wilko & Madlener, Reinhard, 2013. "Assessment of clean-coal strategies: The questionable merits of carbon capture-readiness," Energy, Elsevier, vol. 52(C), pages 27-36.
    9. Evar, Benjamin, 2011. "Conditional inevitability: Expert perceptions of carbon capture and storage uncertainties in the UK context," Energy Policy, Elsevier, vol. 39(6), pages 3414-3424, June.
    10. Chen, Qixin & Kang, Chongqing & Xia, Qing & Guan, Dabo, 2011. "Preliminary exploration on low-carbon technology roadmap of China’s power sector," Energy, Elsevier, vol. 36(3), pages 1500-1512.
    11. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
    12. Richard Perkins & Eric Neumayer, 2009. "How do domestic attributes affect international spillovers of CO2-efficiency?," GRI Working Papers 8, Grantham Research Institute on Climate Change and the Environment.
    13. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    14. Dominic Woolf & Johannes Lehmann & David R. Lee, 2016. "Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    15. Richard Perkins & Eric Neumayer, 2012. "Do recipient country characteristics affect international spillovers of CO 2 -efficiency via trade and foreign direct investment?," Climatic Change, Springer, vol. 112(2), pages 469-491, May.
    16. Valentina Bosetti & Carlo Carraro & Enrica De Cian & Romain Duval & Emanuele Massetti & Massimo Tavoni, 2009. "The Incentives to Participate in, and the Stability of, International Climate Coalitions: A Game-theoretic Analysis Using the Witch Model," Working Papers 2009.64, Fondazione Eni Enrico Mattei.
    17. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    18. Carlo Carraro & Valentina Bosetti & Enrica De Cian & Romain Duval & Emanuele Massetti & Massimo Tavoni, 2009. "The incentives to participate in and the stability of international climate coalitions: a game theoretic approach using the WITCH Model," Working Papers 2009_28, Department of Economics, University of Venice "Ca' Foscari".
    19. Renforth, P. & Jenkins, B.G. & Kruger, T., 2013. "Engineering challenges of ocean liming," Energy, Elsevier, vol. 60(C), pages 442-452.
    20. Akbilgic, Oguz & Doluweera, Ganesh & Mahmoudkhani, Maryam & Bergerson, Joule, 2015. "A meta-analysis of carbon capture and storage technology assessments: Understanding the driving factors of variability in cost estimates," Applied Energy, Elsevier, vol. 159(C), pages 11-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3608-3616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.