Numerical prediction of CO2 capture process by a single droplet in alkaline spray
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2013.03.082
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Hailong & Jakobsen, Jana P. & Wilhelmsen, Øivind & Yan, Jinyue, 2011. "PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models," Applied Energy, Elsevier, vol. 88(11), pages 3567-3579.
- Liu, Hao & Shao, Yingjuan, 2010. "Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant," Applied Energy, Elsevier, vol. 87(10), pages 3162-3170, October.
- Li, H. & Yan, J., 2009. "Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes," Applied Energy, Elsevier, vol. 86(12), pages 2760-2770, December.
- Viebahn, Peter & Daniel, Vallentin & Samuel, Höller, 2012. "Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies," Applied Energy, Elsevier, vol. 97(C), pages 238-248.
- Ou, Xunmin & Xiaoyu, Yan & Zhang, Xiliang, 2011. "Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China," Applied Energy, Elsevier, vol. 88(1), pages 289-297, January.
- Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I., 2012. "A study of influence of acoustic excitation on carbon dioxide capture by a droplet," Energy, Elsevier, vol. 37(1), pages 311-321.
- Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2012. "Influence of droplet mutual interaction on carbon dioxide capture process in sprays," Applied Energy, Elsevier, vol. 92(C), pages 185-193.
- Li, H. & Yan, J., 2009. "Evaluating cubic equations of state for calculation of vapor-liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes," Applied Energy, Elsevier, vol. 86(6), pages 826-836, June.
- Li, H. & Yan, J. & Yan, J. & Anheden, M., 2009. "Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system," Applied Energy, Elsevier, vol. 86(2), pages 202-213, February.
- Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Chuanwen & Guo, Yafei & Li, Changhai & Lu, Shouxiang, 2014. "Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents," Applied Energy, Elsevier, vol. 124(C), pages 241-247.
- Choi, Munkyoung & Cho, Minki & Lee, J.W., 2016. "Empirical formula for the mass flux in chemical absorption of CO2 with ammonia droplets," Applied Energy, Elsevier, vol. 164(C), pages 1-9.
- Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
- Zhao, Bingtao & Su, Yaxin & Tao, Wenwen, 2014. "Mass transfer performance of CO2 capture in rotating packed bed: Dimensionless modeling and intelligent prediction," Applied Energy, Elsevier, vol. 136(C), pages 132-142.
- M. I. Lamas Galdo & J. D. Rodriguez García & J. M. Rebollido Lorenzo, 2021. "Numerical Model to Analyze the Physicochemical Mechanisms Involved in CO 2 Absorption by an Aqueous Ammonia Droplet," IJERPH, MDPI, vol. 18(8), pages 1-16, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
- Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2012. "Influence of droplet mutual interaction on carbon dioxide capture process in sprays," Applied Energy, Elsevier, vol. 92(C), pages 185-193.
- Chen, Shiyi & Xiang, Wenguo & Wang, Dong & Xue, Zhipeng, 2012. "Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture," Applied Energy, Elsevier, vol. 95(C), pages 285-294.
- Luis Míguez, José & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Rodríguez, Sandra, 2018. "Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity," Applied Energy, Elsevier, vol. 211(C), pages 1282-1296.
- Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
- Li, Didi & Zhang, Hongcheng & Li, Yang & Xu, Wenbin & Jiang, Xi, 2018. "Effects of N2 and H2S binary impurities on CO2 geological storage in stratified formation – A sensitivity study," Applied Energy, Elsevier, vol. 229(C), pages 482-492.
- Luo, Xiaobo & Wang, Meihong & Oko, Eni & Okezue, Chima, 2014. "Simulation-based techno-economic evaluation for optimal design of CO2 transport pipeline network," Applied Energy, Elsevier, vol. 132(C), pages 610-620.
- Li, Didi & Jiang, Xi, 2014. "A numerical study of the impurity effects of nitrogen and sulfur dioxide on the solubility trapping of carbon dioxide geological storage," Applied Energy, Elsevier, vol. 128(C), pages 60-74.
- Jiang, Xi, 2011. "A review of physical modelling and numerical simulation of long-term geological storage of CO2," Applied Energy, Elsevier, vol. 88(11), pages 3557-3566.
- Li, Didi & He, Yao & Zhang, Hongcheng & Xu, Wenbin & Jiang, Xi, 2017. "A numerical study of the impurity effects on CO2 geological storage in layered formation," Applied Energy, Elsevier, vol. 199(C), pages 107-120.
- Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
- Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
- Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
- Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
- Luo, Feng & Xu, Rui-Na & Jiang, Pei-Xue, 2013. "Numerical investigation of the influence of vertical permeability heterogeneity in stratified formation and of injection/production well perforation placement on CO2 geological storage with enhanced C," Applied Energy, Elsevier, vol. 102(C), pages 1314-1323.
- Hedin, Niklas & Andersson, Linnéa & Bergström, Lennart & Yan, Jinyue, 2013. "Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption," Applied Energy, Elsevier, vol. 104(C), pages 418-433.
- Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
- Wenchao Yang & Shuhong Li & Xianliang Li & Yuanyuan Liang & Xiaosong Zhang, 2015. "Analysis of a New Liquefaction Combined with Desublimation System for CO 2 Separation Based on N 2 /CO 2 Phase Equilibrium," Energies, MDPI, vol. 8(9), pages 1-14, September.
- Li, Hailong & Jakobsen, Jana P. & Wilhelmsen, Øivind & Yan, Jinyue, 2011. "PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models," Applied Energy, Elsevier, vol. 88(11), pages 3567-3579.
- Elshahomi, Alhoush & Lu, Cheng & Michal, Guillaume & Liu, Xiong & Godbole, Ajit & Venton, Philip, 2015. "Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state," Applied Energy, Elsevier, vol. 140(C), pages 20-32.
More about this item
Keywords
Droplet and spray; Alkaline solution; Carbon dioxide (CO2) capture; Numerical prediction; Transient chemical absorption; Sodium hydroxide;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:109:y:2013:i:c:p:125-134. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.