IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v112y2017icp247-259.html
   My bibliography  Save this article

A comprehensive model for design and analysis of bioethanol production and supply strategies from lignocellulosic biomass

Author

Listed:
  • Lee, Minji
  • Cho, Seolhee
  • Kim, Jiyong

Abstract

This study aims to present a comprehensive decision model for design of the integrated bioethanol supply chain (IBSC). In achieving this goal, we developed a new optimization model using mixed integer linear programming. The model consists of the objective function to minimize the required cost to establish the IBSC along with practical constraints including the limit of biomass, the capacity of technologies, and the land availability. This model is capable of identifying a wide range of solutions for the economically viable IBSC: biomass as a feedstock, technical configuration of the biorefinery, and supply chain solutions. We then analyze the impact of the policies to the bioethanol production and supply strategies by implementing the different scenarios of the bioethanol-gasoline blending policy. To illustrate the capability of the proposed model, we applied the model to the biomass-derived liquid fuel supply system of Jeju Island, Korea. As a result, the total supply cost was estimated to range from 0.83 to 0.88 $/liter according the blending policies. We also analyzed the preferable options to build the IBSC of Jeju Island: woody biomass to agricultural residues, gasification to fermentation as the main conversion technology, and regions with high biomass availability to high-demand regions.

Suggested Citation

  • Lee, Minji & Cho, Seolhee & Kim, Jiyong, 2017. "A comprehensive model for design and analysis of bioethanol production and supply strategies from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 112(C), pages 247-259.
  • Handle: RePEc:eee:renene:v:112:y:2017:i:c:p:247-259
    DOI: 10.1016/j.renene.2017.05.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yongxi & Chen, Chien-Wei & Fan, Yueyue, 2010. "Multistage optimization of the supply chains of biofuels," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 820-830, November.
    2. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    3. Asadullah, Mohammad, 2014. "Barriers of commercial power generation using biomass gasification gas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 201-215.
    4. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    5. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    6. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    7. Johansson, Daniella & Franck, Per-Åke & Berntsson, Thore, 2012. "Hydrogen production from biomass gasification in the oil refining industry – A system analysis," Energy, Elsevier, vol. 38(1), pages 212-227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Efthymios Rodias & Remigio Berruto & Dionysis Bochtis & Alessandro Sopegno & Patrizia Busato, 2019. "Green, Yellow, and Woody Biomass Supply-Chain Management: A Review," Energies, MDPI, vol. 12(15), pages 1-22, August.
    2. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    3. Mondal, Arijit & Giri, Binoy Krishna & Roy, Sankar Kumar, 2023. "An integrated sustainable bio-fuel and bio-energy supply chain: A novel approach based on DEMATEL and fuzzy-random robust flexible programming with Me measure," Applied Energy, Elsevier, vol. 343(C).
    4. Giovanni Alessandro Cappelli & Fabrizio Ginaldi & Davide Fanchini & Sebastiano Andrea Corinzia & Salvatore Luciano Cosentino & Enrico Ceotto, 2021. "Model-Based Assessment of Giant Reed ( Arundo donax L.) Energy Yield in the Form of Diverse Biofuels in Marginal Areas of Italy," Land, MDPI, vol. 10(6), pages 1-24, May.
    5. Bakhtyari, Ali & Bardool, Roghayeh & Rahimpour, Mohammad Reza & Iulianelli, Adolfo, 2021. "Dehydration of bio-alcohols in an enhanced membrane-assisted reactor: A rigorous sensitivity analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 177(C), pages 519-543.
    6. You, Chanhee & Han, Seulki & Kim, Jiyong, 2021. "Integrative design of the optimal biorefinery and bioethanol supply chain under the water-energy-food-land (WEFL) nexus framework," Energy, Elsevier, vol. 228(C).
    7. Dafnomilis, I. & Duinkerken, M.B. & Junginger, M. & Lodewijks, G. & Schott, D.L., 2018. "Optimal equipment deployment for biomass terminal operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 147-163.
    8. Xuezhen Guo & Juliën Voogt & Bert Annevelink & Joost Snels & Argyris Kanellopoulos, 2020. "Optimizing Resource Utilization in Biomass Supply Chains by Creating Integrated Biomass Logistics Centers," Energies, MDPI, vol. 13(22), pages 1-16, November.
    9. Cho, Seolhee & Kim, Jiyong, 2019. "Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops," Energy, Elsevier, vol. 185(C), pages 527-540.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    2. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    3. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    4. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    5. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Gonela, Vinay & Zhang, Jun & Osmani, Atif & Onyeaghala, Raphael, 2015. "Stochastic optimization of sustainable hybrid generation bioethanol supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 1-28.
    7. Azadeh, Ali & Vafa Arani, Hamed, 2016. "Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach," Renewable Energy, Elsevier, vol. 93(C), pages 383-403.
    8. Iye, Edward & Bilsborrow, Paul, 2013. "Cellulosic ethanol production from agricultural residues in Nigeria," Energy Policy, Elsevier, vol. 63(C), pages 207-214.
    9. Jensen, Ida Græsted & Münster, Marie & Pisinger, David, 2017. "Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses," European Journal of Operational Research, Elsevier, vol. 262(2), pages 744-758.
    10. Obi, Okey Francis, 2015. "Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1749-1758.
    11. Zhang, Fengli & Johnson, Dana M. & Wang, Jinjiang, 2016. "Integrating multimodal transport into forest-delivered biofuel supply chain design," Renewable Energy, Elsevier, vol. 93(C), pages 58-67.
    12. Hombach, Laura Elisabeth & Walther, Grit, 2015. "Pareto-efficient legal regulation of the (bio)fuel market using a bi-objective optimization model," European Journal of Operational Research, Elsevier, vol. 245(1), pages 286-295.
    13. Avami, Akram, 2013. "Assessment of optimal biofuel supply chain planning in Iran: Technical, economic, and agricultural perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 761-768.
    14. Moncada, J.A. & Lukszo, Z. & Junginger, M. & Faaij, A. & Weijnen, M., 2017. "A conceptual framework for the analysis of the effect of institutions on biofuel supply chains," Applied Energy, Elsevier, vol. 185(P1), pages 895-915.
    15. Arora, Richa & Behera, Shuvashish & Kumar, Sachin, 2015. "Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 699-717.
    16. Gökhan Memişoğlu & Halit Üster, 2016. "Integrated Bioenergy Supply Chain Network Planning Problem," Transportation Science, INFORMS, vol. 50(1), pages 35-56, February.
    17. Liu, Tingting & McConkey, Brian & Huffman, Ted & Smith, Stephen & MacGregor, Bob & Yemshanov, Denys & Kulshreshtha, Suren, 2014. "Potential and impacts of renewable energy production from agricultural biomass in Canada," Applied Energy, Elsevier, vol. 130(C), pages 222-229.
    18. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    19. Gambelli, Danilo & Alberti, Francesca & Solfanelli, Francesco & Vairo, Daniela & Zanoli, Raffaele, 2017. "Third generation algae biofuels in Italy by 2030: A scenario analysis using Bayesian networks," Energy Policy, Elsevier, vol. 103(C), pages 165-178.
    20. Fattahi, Mohammad & Govindan, Kannan, 2018. "A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 534-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:112:y:2017:i:c:p:247-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.