IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i7p4385-4395.html
   My bibliography  Save this article

Thermodynamic assessment of hydrogen production and cobalt oxidation susceptibility under ethanol reforming conditions

Author

Listed:
  • de Ávila, C.N.
  • Hori, C.E.
  • de Assis, A.J.

Abstract

A comparative thermodynamic analysis of ethanol reforming reactions was conducted using an in-house code. Equilibrium compositions were estimated using the Lagrange multipliers method, which generated systems of non-linear algebraic equations, solved numerically. Effects of temperature, pressure and steam to ethanol, O2 to ethanol and CO2 to ethanol ratios on the equilibrium compositions were evaluated. The validation was done by comparing these data with experimental literature. The results of this work proved to be useful to foresee whether the experimental results follow the stoichiometry of the reactions involved in each process. Mole fractions of H2 and CO2 proved to be the most reliable variables to make this type of validation. Maximization of H2 mole fraction was attained between 773 and 873 K, but maximum net mole production of H2 was only achieved at higher temperatures (>1123 K). This work also advances in the thermodynamics of solid–gas phase interactions. A solid phase thermodynamic analysis was performed to confirm that Co0 formation from CoO is spontaneous under steam reforming conditions. The results showed that this reduction process occurs only for temperatures higher than 430 K. It was also found that once reduced, Co based catalysts will never oxidize back to Co3O4.

Suggested Citation

  • de Ávila, C.N. & Hori, C.E. & de Assis, A.J., 2011. "Thermodynamic assessment of hydrogen production and cobalt oxidation susceptibility under ethanol reforming conditions," Energy, Elsevier, vol. 36(7), pages 4385-4395.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4385-4395
    DOI: 10.1016/j.energy.2011.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211002532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbir, Frano, 2009. "Transition to renewable energy systems with hydrogen as an energy carrier," Energy, Elsevier, vol. 34(3), pages 308-312.
    2. Jing, Q.S. & Zheng, X.M., 2006. "Combined catalytic partial oxidation and CO2 reforming of methane over ZrO2-modified Ni/SiO2 catalysts using fluidized-bed reactor," Energy, Elsevier, vol. 31(12), pages 2184-2192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Horng-Wen & Lin, Ke-Wei, 2019. "Hydrogen-rich syngas production by reforming of ethanol blended with aqueous urea using a thermodynamic analysis," Energy, Elsevier, vol. 166(C), pages 541-551.
    2. Sun, Shaohui & Yan, Wei & Sun, Peiqin & Chen, Junwu, 2012. "Thermodynamic analysis of ethanol reforming for hydrogen production," Energy, Elsevier, vol. 44(1), pages 911-924.
    3. Spallina, V. & Matturro, G. & Ruocco, C. & Meloni, E. & Palma, V. & Fernandez, E. & Melendez, J. & Pacheco Tanaka, A.D. & Viviente Sole, J.L. & van Sint Annaland, M. & Gallucci, F., 2018. "Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: Experimental demonstration, reactor modelling and design," Energy, Elsevier, vol. 143(C), pages 666-681.
    4. Resende, K.A. & Ávila-Neto, C.N. & Rabelo-Neto, R.C. & Noronha, F.B. & Hori, C.E., 2015. "Thermodynamic analysis and reaction routes of steam reforming of bio-oil aqueous fraction," Renewable Energy, Elsevier, vol. 80(C), pages 166-176.
    5. Lee, Jun Sung & Han, Gi Bo & Kang, Misook, 2012. "Low temperature steam reforming of ethanol for carbon monoxide-free hydrogen production over mesoporous Sn-incorporated SBA-15 catalysts," Energy, Elsevier, vol. 44(1), pages 248-256.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Zhaoqi & Perez-Page, Maria & Chen, Jianuo & Rodriguez, Romeo Gonzalez & Cai, Rongsheng & Haigh, Sarah J. & Holmes, Stuart M., 2021. "A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells," Energy, Elsevier, vol. 226(C).
    2. García, Lázaro & González, Daniel & García, Carlos & García, Laura & Brayner, Carlos, 2013. "Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)," Energy, Elsevier, vol. 57(C), pages 469-477.
    3. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    4. LeValley, Trevor L. & Richard, Anthony R. & Fan, Maohong, 2015. "Development of catalysts for hydrogen production through the integration of steam reforming of methane and high temperature water gas shift," Energy, Elsevier, vol. 90(P1), pages 748-758.
    5. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    6. Singh, Neeraj Kumar & Kumari, Priyanka & Singh, Rajesh, 2021. "Intensified hydrogen yield using hydrogenase rich sulfate-reducing bacteria in bio-electrochemical system," Energy, Elsevier, vol. 219(C).
    7. Guo, Yuwei & Li, Yun & Li, Shuguang & Zhang, Lei & Li, Ying & Wang, Jun, 2015. "Enhancement of visible-light photocatalytic activity of Pt supported potassium niobate (Pt-KNbO3) by up-conversion luminescence agent (Er3+:Y3Al5O12) for hydrogen evolution from aqueous methanol solut," Energy, Elsevier, vol. 82(C), pages 72-79.
    8. Fard, Leyla Abolghasemi & Ojani, Reza & Raoof, Jahan Bakhsh & Zare, Ehsan Nazarzadeh & Lakouraj, Moslem Mansour, 2017. "Poly (pyrrole-co-aniline) hollow nanosphere supported Pd nanoflowers as high-performance catalyst for methanol electrooxidation in alkaline media," Energy, Elsevier, vol. 127(C), pages 419-427.
    9. Lupa, Christopher J. & Wylie, Steve R. & Shaw, Andrew & Al-Shamma'a, Ahmed & Sweetman, Andrew J. & Herbert, Ben M.J., 2013. "Gas evolution and syngas heating value from advanced thermal treatment of waste using microwave-induced plasma," Renewable Energy, Elsevier, vol. 50(C), pages 1065-1072.
    10. Santos, D.M.F. & Šljukić, B. & Sequeira, C.A.C. & Macciò, D. & Saccone, A. & Figueiredo, J.L., 2013. "Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys," Energy, Elsevier, vol. 50(C), pages 486-492.
    11. Shih, Yu-Jen & Su, Chia-Chi & Huang, Yao-Hui & Lu, Ming-Chun, 2013. "SiO2-supported ferromagnetic catalysts for hydrogen generation from alkaline NaBH4 (sodium borohydride) solution," Energy, Elsevier, vol. 54(C), pages 263-270.
    12. Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
    13. Rıdvan Karacan & Shahriyar Mukhtarov & İsmail Barış & Aykut İşleyen & Mehmet Emin Yardımcı, 2021. "The Impact of Oil Price on Transition toward Renewable Energy Consumption? Evidence from Russia," Energies, MDPI, vol. 14(10), pages 1-14, May.
    14. Tamboli, Ashif H. & Chaugule, Avinash A. & Sheikh, Faheem A. & Chung, Wook-Jin & Kim, Hern, 2015. "Synthesis and application of CeO2–NiO loaded TiO2 nanofiber as novel catalyst for hydrogen production from sodium borohydride hydrolysis," Energy, Elsevier, vol. 89(C), pages 568-575.
    15. Chinnappan, Amutha & Kang, Hyuck-Chul & Kim, Hern, 2011. "Preparation of PVDF nanofiber composites for hydrogen generation from sodium borohydride," Energy, Elsevier, vol. 36(2), pages 755-759.
    16. Chen, Wei-Hsin & Tsai, Ching-Wei & Lin, Yu-Li, 2017. "Numerical studies of the influences of bypass on hydrogen separation in a multichannel Pd membrane system," Renewable Energy, Elsevier, vol. 104(C), pages 259-270.
    17. Mehra, Roopesh Kumar & Duan, Hao & Juknelevičius, Romualdas & Ma, Fanhua & Li, Junyin, 2017. "Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1458-1498.
    18. Zhou, Chunguang & Zhang, Lan & Swiderski, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2011. "Study and development of a high temperature process of multi-reformation of CH4 with CO2 for remediation of greenhouse gas," Energy, Elsevier, vol. 36(9), pages 5450-5459.
    19. Ding, Xiangqian & Zhu, Yunfeng & Wei, Lingjun & Li, Ying & Li, Liquan, 2013. "Synergistic hydrogen desorption of HCS MgH2 + LiAlH4 composite," Energy, Elsevier, vol. 55(C), pages 933-938.
    20. Heidarian, Alireza & Cheung, Sherman C.P. & Ojha, Ruchika & Rosengarten, Gary, 2022. "Effects of current collector shape and configuration on charge percolation and electric conductivity of slurry electrodes for electrochemical systems," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4385-4395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.