Synthesis and application of CeO2–NiO loaded TiO2 nanofiber as novel catalyst for hydrogen production from sodium borohydride hydrolysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.06.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Park, K. & Hwang, H.K., 2013. "Fabrication and electrical properties of nanocrystalline Dy3+-doped CeO2 for intermediate-temperature solid oxide fuel cells," Energy, Elsevier, vol. 55(C), pages 304-309.
- Chinnappan, Amutha & Kang, Hyuck-Chul & Kim, Hern, 2011. "Preparation of PVDF nanofiber composites for hydrogen generation from sodium borohydride," Energy, Elsevier, vol. 36(2), pages 755-759.
- Chinnappan, Amutha & Jadhav, Arvind H. & Puguan, John Marc C. & Appiah-Ntiamoah, Richard & Kim, Hern, 2015. "Fabrication of ionic liquid/polymer nanoscale networks by electrospinning and chemical cross-linking and their application in hydrogen generation from the hydrolysis of NaBH4," Energy, Elsevier, vol. 79(C), pages 482-488.
- Arthur, Ernest Evans & Li, Fang & Momade, Francis W.Y. & Kim, Hern, 2014. "Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube," Energy, Elsevier, vol. 76(C), pages 822-829.
- Li, Qiming & Chen, Yingbo & Lee, Dong Joo & Li, Fang & Kim, Hern, 2012. "Preparation of Y-zeolite/CoCl2 doped PVDF composite nanofiber and its application in hydrogen production," Energy, Elsevier, vol. 38(1), pages 144-150.
- Liu, Yongan & Wang, Xinhua & Liu, Haizhen & Dong, Zhaohui & Cao, Guozhou & Yan, Mi, 2014. "Hydrogen generation from Mg–LiBH4 hydrolysis improved by AlCl3 addition," Energy, Elsevier, vol. 68(C), pages 548-554.
- Barbir, Frano, 2009. "Transition to renewable energy systems with hydrogen as an energy carrier," Energy, Elsevier, vol. 34(3), pages 308-312.
- Santos, D.M.F. & Sequeira, C.A.C., 2011. "Sodium borohydride as a fuel for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3980-4001.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bozkurt, Gamze & Özer, Abdulkadir & Yurtcan, Ayşe Bayrakçeken, 2019. "Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4," Energy, Elsevier, vol. 180(C), pages 702-713.
- Tamboli, Ashif H. & Jadhav, Amol R. & Chung, Wook-Jin & Kim, Hern, 2015. "Structurally modified cerium doped hydrotalcite-like precursor as efficient catalysts for hydrogen production from sodium borohydride hydrolysis," Energy, Elsevier, vol. 93(P1), pages 955-962.
- Loghmani, Mohammad Hassan & Shojaei, Abdollah Fallah & Khakzad, Morteza, 2017. "Hydrogen generation as a clean energy through hydrolysis of sodium borohydride over Cu-Fe-B nano powders: Effect of polymers and surfactants," Energy, Elsevier, vol. 126(C), pages 830-840.
- Helder X. Nunes & Diogo L. Silva & Carmen M. Rangel & Alexandra M. F. R. Pinto, 2021. "Rehydrogenation of Sodium Borates to Close the NaBH 4 -H 2 Cycle: A Review," Energies, MDPI, vol. 14(12), pages 1-28, June.
- Tomboc, Gracita Raquel M. & Tamboli, Ashif H. & Kim, Hern, 2017. "Synthesis of Co3O4 macrocubes catalyst using novel chitosan/urea template for hydrogen generation from sodium borohydride," Energy, Elsevier, vol. 121(C), pages 238-245.
- Cai, Haokun & Liu, Liping & Chen, Qiang & Lu, Ping & Dong, Jian, 2016. "Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride," Energy, Elsevier, vol. 99(C), pages 129-135.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tamboli, Ashif H. & Jadhav, Amol R. & Chung, Wook-Jin & Kim, Hern, 2015. "Structurally modified cerium doped hydrotalcite-like precursor as efficient catalysts for hydrogen production from sodium borohydride hydrolysis," Energy, Elsevier, vol. 93(P1), pages 955-962.
- Shih, Yu-Jen & Su, Chia-Chi & Huang, Yao-Hui & Lu, Ming-Chun, 2013. "SiO2-supported ferromagnetic catalysts for hydrogen generation from alkaline NaBH4 (sodium borohydride) solution," Energy, Elsevier, vol. 54(C), pages 263-270.
- Huang, Yao-Hui & Su, Chia-Chi & Wang, Shu-Ling & Lu, Ming-Chun, 2012. "Development of Al2O3 carrier-Ru composite catalyst for hydrogen generation from alkaline NaBH4 hydrolysis," Energy, Elsevier, vol. 46(1), pages 242-247.
- Loghmani, Mohammad Hassan & Shojaei, Abdollah Fallah, 2014. "Hydrogen production through hydrolysis of sodium borohydride: Oleic acid stabilized Co–La–Zr–B nanoparticle as a novel catalyst," Energy, Elsevier, vol. 68(C), pages 152-159.
- Helder X. Nunes & Diogo L. Silva & Carmen M. Rangel & Alexandra M. F. R. Pinto, 2021. "Rehydrogenation of Sodium Borates to Close the NaBH 4 -H 2 Cycle: A Review," Energies, MDPI, vol. 14(12), pages 1-28, June.
- Li, Fang & Arthur, Ernest Evans & La, Dahye & Li, Qiming & Kim, Hern, 2014. "Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride)," Energy, Elsevier, vol. 71(C), pages 32-39.
- Cai, Haokun & Liu, Liping & Chen, Qiang & Lu, Ping & Dong, Jian, 2016. "Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride," Energy, Elsevier, vol. 99(C), pages 129-135.
- Shen, Xiaochen & Wang, Qing & Wu, Qingquan & Guo, Siqi & Zhang, Zhengyan & Sun, Ziyang & Liu, Baishu & Wang, Zhibin & Zhao, Bin & Ding, Weiping, 2015. "CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution," Energy, Elsevier, vol. 90(P1), pages 464-474.
- Ji, Zhaoqi & Perez-Page, Maria & Chen, Jianuo & Rodriguez, Romeo Gonzalez & Cai, Rongsheng & Haigh, Sarah J. & Holmes, Stuart M., 2021. "A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells," Energy, Elsevier, vol. 226(C).
- García, Lázaro & González, Daniel & García, Carlos & García, Laura & Brayner, Carlos, 2013. "Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)," Energy, Elsevier, vol. 57(C), pages 469-477.
- Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
- Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
- Singh, Neeraj Kumar & Kumari, Priyanka & Singh, Rajesh, 2021. "Intensified hydrogen yield using hydrogenase rich sulfate-reducing bacteria in bio-electrochemical system," Energy, Elsevier, vol. 219(C).
- Guo, Yuwei & Li, Yun & Li, Shuguang & Zhang, Lei & Li, Ying & Wang, Jun, 2015. "Enhancement of visible-light photocatalytic activity of Pt supported potassium niobate (Pt-KNbO3) by up-conversion luminescence agent (Er3+:Y3Al5O12) for hydrogen evolution from aqueous methanol solut," Energy, Elsevier, vol. 82(C), pages 72-79.
- Fard, Leyla Abolghasemi & Ojani, Reza & Raoof, Jahan Bakhsh & Zare, Ehsan Nazarzadeh & Lakouraj, Moslem Mansour, 2017. "Poly (pyrrole-co-aniline) hollow nanosphere supported Pd nanoflowers as high-performance catalyst for methanol electrooxidation in alkaline media," Energy, Elsevier, vol. 127(C), pages 419-427.
- Jianfeng Mao & Duncan H. Gregory, 2015. "Recent Advances in the Use of Sodium Borohydride as a Solid State Hydrogen Store," Energies, MDPI, vol. 8(1), pages 1-24, January.
- Lupa, Christopher J. & Wylie, Steve R. & Shaw, Andrew & Al-Shamma'a, Ahmed & Sweetman, Andrew J. & Herbert, Ben M.J., 2013. "Gas evolution and syngas heating value from advanced thermal treatment of waste using microwave-induced plasma," Renewable Energy, Elsevier, vol. 50(C), pages 1065-1072.
- Santos, D.M.F. & Šljukić, B. & Sequeira, C.A.C. & Macciò, D. & Saccone, A. & Figueiredo, J.L., 2013. "Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys," Energy, Elsevier, vol. 50(C), pages 486-492.
- Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
- Netskina, O.V. & Komova, O.V. & Simagina, V.I. & Odegova, G.V. & Prosvirin, I.P. & Bulavchenko, O.A., 2016. "Aqueous-alkaline NaBH4 solution: The influence of storage duration of solutions on reduction and activity of cobalt catalysts," Renewable Energy, Elsevier, vol. 99(C), pages 1073-1081.
More about this item
Keywords
Nanofiber; Hydrogen; Catalyst; Cerium oxide; Nickel oxide; Titanium oxide;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:568-575. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.