IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v50y2013icp486-492.html
   My bibliography  Save this article

Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys

Author

Listed:
  • Santos, D.M.F.
  • Šljukić, B.
  • Sequeira, C.A.C.
  • Macciò, D.
  • Saccone, A.
  • Figueiredo, J.L.

Abstract

Development of electrocatalytic materials for the hydrogen evolution reaction (HER) is attempted with the aim of reducing the water electrolysis overpotential and increasing its efficiency. Using linear scan voltammetry measurements of the hydrogen discharge enables evaluation of the electrocatalytic activity for the HER of platinum–dysprosium (Pt–Dy) intermetallic alloy electrodes of different compositions. Understanding of materials electrocatalytic performance is based on determination of several crucial kinetic parameters, including the Tafel coefficients, b, charge transfer coefficients, α, exchange current densities, j0, and activation energies, Ea. Influence of temperature on HER is investigated by performing studies at temperatures ranging from 25 °C to 85 °C. The effect of the Dy amount in the efficiency of the HER on the Pt–Dy alloys is analysed. Results demonstrate that Dy can substantially increase the electrocatalytic activity of the Pt alloys, in comparison to the single Pt electrode. Efforts are made to correlate the microstructure of the alloys with their performance towards the HER.

Suggested Citation

  • Santos, D.M.F. & Šljukić, B. & Sequeira, C.A.C. & Macciò, D. & Saccone, A. & Figueiredo, J.L., 2013. "Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys," Energy, Elsevier, vol. 50(C), pages 486-492.
  • Handle: RePEc:eee:energy:v:50:y:2013:i:c:p:486-492
    DOI: 10.1016/j.energy.2012.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212008407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Penner, S.S., 2006. "Steps toward the hydrogen economy," Energy, Elsevier, vol. 31(1), pages 33-43.
    2. Kanoglu, Mehmet & Ayanoglu, Abdulkadir & Abusoglu, Aysegul, 2011. "Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system," Energy, Elsevier, vol. 36(7), pages 4422-4433.
    3. Marshall, A. & Børresen, B. & Hagen, G. & Tsypkin, M. & Tunold, R., 2007. "Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis," Energy, Elsevier, vol. 32(4), pages 431-436.
    4. Sequeira, C.A.C. & Santos, D.M.F. & Brito, P.S.D., 2011. "Electrocatalytic activity of simple and modified Fe–P electrodeposits for hydrogen evolution from alkaline media," Energy, Elsevier, vol. 36(2), pages 847-853.
    5. Mbah, Jonathan & Weaver, Eric & Srinivasan, Sesha & Krakow, Burton & Wolan, John & Goswami, Yogi & Stefanakos, Elias, 2010. "Low voltage H2O electrolysis for enhanced hydrogen production," Energy, Elsevier, vol. 35(12), pages 5008-5012.
    6. Mansilla, Christine & Sigurvinsson, Jon & Bontemps, André & Maréchal, Alain & Werkoff, François, 2007. "Heat management for hydrogen production by high temperature steam electrolysis," Energy, Elsevier, vol. 32(4), pages 423-430.
    7. Rosen, Marc A., 2010. "Advances in hydrogen production by thermochemical water decomposition: A review," Energy, Elsevier, vol. 35(2), pages 1068-1076.
    8. Barbir, Frano, 2009. "Transition to renewable energy systems with hydrogen as an energy carrier," Energy, Elsevier, vol. 34(3), pages 308-312.
    9. Saxe, Maria & Alvfors, Per, 2007. "Advantages of integration with industry for electrolytic hydrogen production," Energy, Elsevier, vol. 32(1), pages 42-50.
    10. Mazloomi, Kaveh & Gomes, Chandima, 2012. "Hydrogen as an energy carrier: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3024-3033.
    11. Mazloomi, S.K. & Sulaiman, Nasri, 2012. "Influencing factors of water electrolysis electrical efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4257-4263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D.M.F. Santos & J.R.B. Lourenço & D. Macciò & A. Saccone & C.A.C. Sequeira & J.L. Figueiredo, 2020. "Ethanol Electrooxidation at Platinum-Rare Earth (RE = Ce, Sm, Ho, Dy) Binary Alloys," Energies, MDPI, vol. 13(7), pages 1-21, April.
    2. Wu, Liang & He, Yuehui & Lei, Ting & Nan, Bo & Xu, Nanping & Zou, Jin & Huang, Baiyun & Liu, C.T., 2014. "The stability of hydrogen evolution activity and corrosion behavior of porous Ni3Al–Mo electrode in alkaline solution during long-term electrolysis," Energy, Elsevier, vol. 67(C), pages 19-26.
    3. Avasarala, Bharat & Haldar, Pradeep, 2013. "Durability and degradation mechanism of titanium nitride based electrocatalysts for PEM (proton exchange membrane) fuel cell applications," Energy, Elsevier, vol. 57(C), pages 545-553.
    4. Gong, Xuzhong & Wang, Mingyong & Liu, Yang & Wang, Zhi & Guo, Zhancheng, 2014. "Variation with time of cell voltage for coal slurry electrolysis in sulfuric acid," Energy, Elsevier, vol. 65(C), pages 233-239.
    5. Filipe M. B. Gusmão & Dušan Mladenović & Kristina Radinović & Diogo M. F. Santos & Biljana Šljukić, 2022. "Polyoxometalates as Electrocatalysts for Electrochemical Energy Conversion and Storage," Energies, MDPI, vol. 15(23), pages 1-18, November.
    6. Ravichandran, S. & Venkatkarthick, R. & Sankari, A. & Vasudevan, S. & Jonas Davidson, D. & Sozhan, G., 2014. "Platinum deposition on the nafion membrane by impregnation reduction using nonionic surfactant for water electrolysis – An alternate approach," Energy, Elsevier, vol. 68(C), pages 148-151.
    7. Ji, Zhaoqi & Perez-Page, Maria & Chen, Jianuo & Rodriguez, Romeo Gonzalez & Cai, Rongsheng & Haigh, Sarah J. & Holmes, Stuart M., 2021. "A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells," Energy, Elsevier, vol. 226(C).
    8. Ge, Lan & Gong, Xuzhong & Wang, Zhi & Zhao, Lixin & Wang, Yuhua & Wang, Mingyong, 2016. "Insight of anode reaction for CWS (coal water slurry) electrolysis for hydrogen production," Energy, Elsevier, vol. 96(C), pages 372-382.
    9. Wu, Liang & He, Yuehui & Lei, Ting & Nan, Bo & Xu, Nanping & Zou, Jin & Huang, Baiyun & Liu, C.T., 2013. "Characterization of the porous Ni3Al–Mo electrodes during hydrogen generation from alkaline water electrolysis," Energy, Elsevier, vol. 63(C), pages 216-224.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sequeira, C.A.C. & Santos, D.M.F. & Brito, P.S.D., 2011. "Electrocatalytic activity of simple and modified Fe–P electrodeposits for hydrogen evolution from alkaline media," Energy, Elsevier, vol. 36(2), pages 847-853.
    2. El-Askary, W.A. & Sakr, I.M. & Ibrahim, K.A. & Balabel, A., 2015. "Hydrodynamics characteristics of hydrogen evolution process through electrolysis: Numerical and experimental studies," Energy, Elsevier, vol. 90(P1), pages 722-737.
    3. Weng, Baicheng & Wu, Zhu & Li, Zhilin & Yang, Hui, 2012. "Hydrogen generation from hydrolysis of MNH2BH3 and NH3BH3/MH (M=Li, Na) for fuel cells based unmanned submarine vehicles application," Energy, Elsevier, vol. 38(1), pages 205-211.
    4. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    5. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    6. González Rodríguez, Daniel & Brayner de Oliveira Lira, Carlos Alberto & García Parra, Lázaro Roger & García Hernández, Carlos Rafael & de la Torre Valdés, Raciel, 2018. "Computational model of a sulfur-iodine thermochemical water splitting system coupled to a VHTR for nuclear hydrogen production," Energy, Elsevier, vol. 147(C), pages 1165-1176.
    7. Ma, Li-Juan & Wang, Jianfeng & Han, Min & Jia, Jianfeng & Wu, Hai-Shun & Zhang, Xiang, 2019. "Adsorption of multiple H2 molecules on the complex TiC6H6: An unusual combination of chemisorption and physisorption," Energy, Elsevier, vol. 171(C), pages 315-325.
    8. Shih, Yu-Jen & Su, Chia-Chi & Huang, Yao-Hui & Lu, Ming-Chun, 2013. "SiO2-supported ferromagnetic catalysts for hydrogen generation from alkaline NaBH4 (sodium borohydride) solution," Energy, Elsevier, vol. 54(C), pages 263-270.
    9. Wang, Shuofeng & Ji, Changwei & Zhang, Jian & Zhang, Bo, 2011. "Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen–oxygen mixtures," Energy, Elsevier, vol. 36(10), pages 5832-5837.
    10. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    11. Chinnappan, Amutha & Kang, Hyuck-Chul & Kim, Hern, 2011. "Preparation of PVDF nanofiber composites for hydrogen generation from sodium borohydride," Energy, Elsevier, vol. 36(2), pages 755-759.
    12. Mohammadi, Amin & Mehrpooya, Mehdi, 2018. "A comprehensive review on coupling different types of electrolyzer to renewable energy sources," Energy, Elsevier, vol. 158(C), pages 632-655.
    13. Ravichandran, S. & Venkatkarthick, R. & Sankari, A. & Vasudevan, S. & Jonas Davidson, D. & Sozhan, G., 2014. "Platinum deposition on the nafion membrane by impregnation reduction using nonionic surfactant for water electrolysis – An alternate approach," Energy, Elsevier, vol. 68(C), pages 148-151.
    14. M, Aravindan & V, Madhan Kumar & Hariharan, V.S. & Narahari, Tharun & P, Arun Kumar & K, Madhesh & G, Praveen Kumar & Prabakaran, Rajendran, 2023. "Fuelling the future: A review of non-renewable hydrogen production and storage techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    16. Abánades, A. & Rubbia, C. & Salmieri, D., 2012. "Technological challenges for industrial development of hydrogen production based on methane cracking," Energy, Elsevier, vol. 46(1), pages 359-363.
    17. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    19. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    20. Rahimpour, M.R. & Mirvakili, A. & Paymooni, K., 2011. "A novel water perm-selective membrane dual-type reactor concept for Fischer–Tropsch synthesis of GTL (gas to liquid) technology," Energy, Elsevier, vol. 36(2), pages 1223-1235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:50:y:2013:i:c:p:486-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.