IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v219y2021ics0360544220326906.html
   My bibliography  Save this article

Intensified hydrogen yield using hydrogenase rich sulfate-reducing bacteria in bio-electrochemical system

Author

Listed:
  • Singh, Neeraj Kumar
  • Kumari, Priyanka
  • Singh, Rajesh

Abstract

In this study, the Bio-electrochemical system was used for the suppression of methanogens, the competitors of the sulfate-reducing bacteria, as well as recovery of higher hydrogen yields. The optimized conditions are applied by keeping the variables in range to focus on maximum hydrogen production during both phases. The confirmatory experiments conducted helps in a better understanding of the shift in metabolism towards hydrogen producers by preventing hydrogenotrophic methanogenic consumption under externally applied potential. Model adequacy checking was performed whether the approximate model would give poor or misleading results was also confirmed by the principal components analysis of the angle between vectors. The hydrogen production confirmation (up to 2.523 ± 0.230 H2 mole/mole glucose) extends for the individual bi-phasic hydrogen yield as well as overall recovery. The average carbon chain elongation to 3.829 indicates the possible consumption of CO2 for the synthesis of higher chain hydrocarbons (fatty acids). The Anderson-Darling (AD) statistic of the residuals of actual and predicted hydrogen production computed values, less than the critical value of statistic and higher than significance (>0.05), and various kinetic model coefficients test also confirms the suitability prediction by the model.

Suggested Citation

  • Singh, Neeraj Kumar & Kumari, Priyanka & Singh, Rajesh, 2021. "Intensified hydrogen yield using hydrogenase rich sulfate-reducing bacteria in bio-electrochemical system," Energy, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326906
    DOI: 10.1016/j.energy.2020.119583
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220326906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Mengmeng & Westerholm, Maria & Qiao, Wei & Wandera, Simon M. & Dong, Renjie, 2020. "High rate anaerobic digestion of swine wastewater in an anaerobic membrane bioreactor," Energy, Elsevier, vol. 193(C).
    2. Silva-Illanes, Fernando & Tapia-Venegas, Estela & Schiappacasse, M. Cristina & Trably, Eric & Ruiz-Filippi, Gonzalo, 2017. "Impact of hydraulic retention time (HRT) and pH on dark fermentative hydrogen production from glycerol," Energy, Elsevier, vol. 141(C), pages 358-367.
    3. Zhou, Aijuan & Liu, Zhihong & Wang, Sufang & Chen, E. & Wei, Yaoli & Liu, Wenzong & Wang, Aijie & Yue, Xiuping, 2019. "Bio-electrolysis contribute to simultaneous bio-hydrogen recovery and phosphorus release from waste activated sludge assisted with prefermentation," Energy, Elsevier, vol. 185(C), pages 787-794.
    4. Oruc, Onur & Dincer, Ibrahim, 2021. "Development and performance assessment power generating systems using clean hydrogen," Energy, Elsevier, vol. 215(PB).
    5. Prajapati, Kalp Bhusan & Singh, Rajesh, 2020. "Bio-electrochemically hydrogen and methane production from co-digestion of wastes," Energy, Elsevier, vol. 198(C).
    6. Barbir, Frano, 2009. "Transition to renewable energy systems with hydrogen as an energy carrier," Energy, Elsevier, vol. 34(3), pages 308-312.
    7. Morsy, Fatthy Mohamed, 2015. "CO2-free biohydrogen production by mixed dark and photofermentation bacteria from sorghum starch using a modified simple purification and collection system," Energy, Elsevier, vol. 87(C), pages 594-604.
    8. Zhen, Guangyin & Lu, Xueqin & Kobayashi, Takuro & Li, Yu-You & Xu, Kaiqin & Zhao, Youcai, 2015. "Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis," Applied Energy, Elsevier, vol. 148(C), pages 78-86.
    9. Juraščík, Martin & Sues, Anna & Ptasinski, Krzysztof J., 2010. "Exergy analysis of synthetic natural gas production method from biomass," Energy, Elsevier, vol. 35(2), pages 880-888.
    10. Ma, Shuaishuai & Wang, Hongliang & Li, Jingxue & Fu, Yu & Zhu, Wanbin, 2019. "Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion," Energy, Elsevier, vol. 189(C).
    11. Razi, Faran & Dincer, Ibrahim & Gabriel, Kamiel, 2020. "Energy and exergy analyses of a new integrated thermochemical copper-chlorine cycle for hydrogen production," Energy, Elsevier, vol. 205(C).
    12. Liu, Yuxiang & Liang, Tao & Yuan, Xin & Lv, Yongkang, 2019. "The performance of COD removal and hydrogen production in a single stage system from starch using the consortium PB-Z under simulated natural conditions," Energy, Elsevier, vol. 173(C), pages 951-958.
    13. Qureshy, Ali M.M.I. & Dincer, Ibrahim, 2020. "Energy and exergy analyses of an integrated renewable energy system for hydrogen production," Energy, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zagrodnik, Roman & Duber, Anna, 2024. "Continuous dark-photo fermentative H2 production from synthetic lignocellulose hydrolysate with different photoheterotrophic cultures: Sequential vs. co-culture processes," Energy, Elsevier, vol. 290(C).
    2. Gollangi, Raju & K, NagamalleswaraRao, 2022. "Energy, exergy analysis of conceptually designed monochloromethane production process from hydrochlorination of methanol," Energy, Elsevier, vol. 239(PA).
    3. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).
    4. Meky, Naira & Elreedy, Ahmed & Ibrahim, Mona G. & Fujii, Manabu & Tawfik, Ahmed, 2021. "Intermittent versus sequential dark-photo fermentative hydrogen production as an alternative for bioenergy recovery from protein-rich effluents," Energy, Elsevier, vol. 217(C).
    5. Azarpour, Abbas & Mohamadi-Baghmolaei, Mohamad & Hajizadeh, Abdollah & Zendehboudi, Sohrab, 2022. "Systematic energy and exergy assessment of a hydropurification process: Theoretical and practical insights," Energy, Elsevier, vol. 239(PC).
    6. Liu, Yuxiang & Liang, Tao & Yuan, Xin & Lv, Yongkang, 2019. "The performance of COD removal and hydrogen production in a single stage system from starch using the consortium PB-Z under simulated natural conditions," Energy, Elsevier, vol. 173(C), pages 951-958.
    7. Aydin, Muhammed Iberia & Selcuk, Huseyin & Dincer, Ibrahim, 2022. "A photoelectrochemical reactor for ion separation and hydrogen production," Energy, Elsevier, vol. 256(C).
    8. Ozturk, Merve & Dincer, Ibrahim, 2022. "System development and assessment for green hydrogen generation and blending with natural gas," Energy, Elsevier, vol. 261(PB).
    9. Morsy, Fatthy Mohamed, 2015. "CO2-free biohydrogen production by mixed dark and photofermentation bacteria from sorghum starch using a modified simple purification and collection system," Energy, Elsevier, vol. 87(C), pages 594-604.
    10. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    11. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    12. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    13. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    14. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    15. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    16. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
    17. van der Heijden, Harro & Ptasinski, Krzysztof J., 2012. "Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis," Energy, Elsevier, vol. 46(1), pages 200-210.
    18. Ji, Zhaoqi & Perez-Page, Maria & Chen, Jianuo & Rodriguez, Romeo Gonzalez & Cai, Rongsheng & Haigh, Sarah J. & Holmes, Stuart M., 2021. "A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells," Energy, Elsevier, vol. 226(C).
    19. Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2021. "Study on the feasibility of the micromix combustion principle in low NOx H2 burners for domestic and industrial boilers: A numerical approach," Energy, Elsevier, vol. 236(C).
    20. García, Lázaro & González, Daniel & García, Carlos & García, Laura & Brayner, Carlos, 2013. "Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)," Energy, Elsevier, vol. 57(C), pages 469-477.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.