IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i4p2215-2224.html
   My bibliography  Save this article

Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed

Author

Listed:
  • Medrano, J.A.
  • Oliva, M.
  • Ruiz, J.
  • García, L.
  • Arauzo, J.

Abstract

Sustainable pathways for producing hydrogen as a synthesis intermediate or as a clean energetic vector will be needed in the future. Renewable biomass resources should be taken into account in this new scenario. Processing through a pyrolysis step, optimized to high liquid production (bio-oil), increases the energy bulk density of biomass for transportation. Steam reforming of the aqueous fraction is an alternative process that increases the hydrogen content of the syngas. However, the thermochemical conversion of organic compounds derived from biomass involves drawbacks such as coke formation on the catalysts. This work studies the performance of Ni–Al catalysts modified with Ca or Mg in the steam reforming of the aqueous fraction of pyrolysis liquids and the resulting coke deposits. The catalyst composition influenced the quantity and type of coke deposits. Calcium improved the formation of carbonaceous products leading to lower H2/CO ratios while magnesium improved the WGS (water gas shift) reaction. The strategy of reducing the space velocity resulted in a low coke removal although the addition of small quantities of oxygen decreased the coke content of the catalyst by more than 50% weight. Greater efficiency and further catalyst development are needed to improve the energetic requirements of the process.

Suggested Citation

  • Medrano, J.A. & Oliva, M. & Ruiz, J. & García, L. & Arauzo, J., 2011. "Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed," Energy, Elsevier, vol. 36(4), pages 2215-2224.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:4:p:2215-2224
    DOI: 10.1016/j.energy.2010.03.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421000188X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Orecchini, Fabio & Bocci, Enrico, 2007. "Biomass to hydrogen for the realization of closed cycles of energy resources," Energy, Elsevier, vol. 32(6), pages 1006-1011.
    2. Özbay, Nurgül & Apaydın-Varol, Esin & Burcu Uzun, Başak & Eren Pütün, Ayşe, 2008. "Characterization of bio-oil obtained from fruit pulp pyrolysis," Energy, Elsevier, vol. 33(8), pages 1233-1240.
    3. Qian, Yejian & Zuo, Chengji & Tan, Jian & He, Jianhui, 2007. "Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass," Energy, Elsevier, vol. 32(3), pages 196-202.
    4. Pütün, Ayşe E & Apaydin, Esin & Pütün, Ersan, 2002. "Bio-oil production from pyrolysis and steam pyrolysis of soybean-cake: product yields and composition," Energy, Elsevier, vol. 27(7), pages 703-713.
    5. Xu, Yufu & Wang, Qiongjie & Hu, Xianguo & Li, Chuan & Zhu, Xifeng, 2010. "Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig," Energy, Elsevier, vol. 35(1), pages 283-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Dega, Frank Blondel & Chamoumi, Mostafa & Braidy, Nadi & Abatzoglou, Nicolas, 2019. "Autothermal dry reforming of methane with a nickel spinellized catalyst prepared from a negative value metallurgical residue," Renewable Energy, Elsevier, vol. 138(C), pages 1239-1249.
    3. Wang, Shuofeng & Ji, Changwei & Zhang, Jian & Zhang, Bo, 2011. "Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen–oxygen mixtures," Energy, Elsevier, vol. 36(10), pages 5832-5837.
    4. Li, Lin & Tang, Dawei & Song, Yongchen & Jiang, Bo & Zhang, Qian, 2018. "Hydrogen production from ethanol steam reforming on Ni-Ce/MMT catalysts," Energy, Elsevier, vol. 149(C), pages 937-943.
    5. Resende, K.A. & Ávila-Neto, C.N. & Rabelo-Neto, R.C. & Noronha, F.B. & Hori, C.E., 2015. "Thermodynamic analysis and reaction routes of steam reforming of bio-oil aqueous fraction," Renewable Energy, Elsevier, vol. 80(C), pages 166-176.
    6. Yang, Ren-Xuan & Wu, Shan-Luo & Chuang, Kui-Hao & Wey, Ming-Yen, 2020. "Co-production of carbon nanotubes and hydrogen from waste plastic gasification in a two-stage fluidized catalytic bed," Renewable Energy, Elsevier, vol. 159(C), pages 10-22.
    7. Budzianowski, Wojciech M., 2012. "Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors," Energy, Elsevier, vol. 41(1), pages 280-297.
    8. Chen, Guanyi & Yao, Jingang & Liu, Jing & Yan, Beibei & Shan, Rui, 2016. "Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil," Renewable Energy, Elsevier, vol. 91(C), pages 315-322.
    9. Paraskevi Panagiotopoulou & Christina Papadopoulou & Haris Matralis & Xenophon Verykios, 2014. "Production of renewable hydrogen by reformation of biofuels," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 231-253, May.
    10. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Cai, Wenfei & Dai, Li & Liu, Ronghou, 2018. "Catalytic fast pyrolysis of rice husk for bio-oil production," Energy, Elsevier, vol. 154(C), pages 477-487.
    12. Ochoa, Aitor & Bilbao, Javier & Gayubo, Ana G. & Castaño, Pedro, 2020. "Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Xie, Huaqing & Li, Rongquan & Yu, Zhenyu & Wang, Zhengyu & Yu, Qingbo & Qin, Qin, 2020. "Combined steam/dry reforming of bio-oil for H2/CO syngas production with blast furnace slag as heat carrier," Energy, Elsevier, vol. 200(C).
    14. Remón, J. & Arcelus-Arrillaga, P. & García, L. & Arauzo, J., 2018. "Simultaneous production of gaseous and liquid biofuels from the synergetic co-valorisation of bio-oil and crude glycerol in supercritical water," Applied Energy, Elsevier, vol. 228(C), pages 2275-2287.
    15. Butler, Eoin & Devlin, Ger & Meier, Dietrich & McDonnell, Kevin, 2011. "A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4171-4186.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aysu, Tevfik & Küçük, M. Maşuk, 2014. "Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products," Energy, Elsevier, vol. 64(C), pages 1002-1025.
    2. Gollakota, Anjani R.K. & Reddy, Madhurima & Subramanyam, Malladi D. & Kishore, Nanda, 2016. "A review on the upgradation techniques of pyrolysis oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1543-1568.
    3. Xu, Yufu & Wang, Qiongjie & Hu, Xianguo & Li, Chuan & Zhu, Xifeng, 2010. "Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig," Energy, Elsevier, vol. 35(1), pages 283-287.
    4. Liu, Junhai & Zhuang, Yingbin & Li, Yan & Chen, Limei & Guo, Jingxue & Li, Demao & Ye, Naihao, 2013. "Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology," Energy, Elsevier, vol. 60(C), pages 69-76.
    5. Feng, Ping & Hao, Lifang & Huo, Chaofei & Wang, Ze & Lin, Weigang & Song, Wenli, 2014. "Rheological behavior of coal bio-oil slurries," Energy, Elsevier, vol. 66(C), pages 744-749.
    6. Wang, Ze & Lin, Weigang & Song, Wenli & Wu, Xuexing, 2012. "Pyrolysis of the lignocellulose fermentation residue by fixed-bed micro reactor," Energy, Elsevier, vol. 43(1), pages 301-305.
    7. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    8. Yuan, Xingzhong & Ding, Xiaowei & Leng, Lijian & Li, Hui & Shao, Jianguang & Qian, Yingying & Huang, Huajun & Chen, Xiaohong & Zeng, Guangming, 2018. "Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions," Energy, Elsevier, vol. 154(C), pages 110-118.
    9. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    10. Kumar, R. Sathish & Sivakumar, S. & Joshuva, A. & Deenadayalan, G. & Vishnuvardhan, R., 2021. "Bio-fuel production from Martynia annua L. seeds using slow pyrolysis reactor and its effects on diesel engine performance, combustion and emission characteristics," Energy, Elsevier, vol. 217(C).
    11. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    12. Hu, Shengyang & Guan, Yanping & Wang, Yun & Han, Heyou, 2011. "Nano-magnetic catalyst KF/CaO-Fe3O4 for biodiesel production," Applied Energy, Elsevier, vol. 88(8), pages 2685-2690, August.
    13. Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Experimental and numerical simulation study of oxycombustion of fast pyrolysis bio-oil from lignocellulosic biomass," Energy, Elsevier, vol. 126(C), pages 854-867.
    14. Yuan, X.Z. & Li, H. & Zeng, G.M. & Tong, J.Y. & Xie, W., 2007. "Sub- and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture," Energy, Elsevier, vol. 32(11), pages 2081-2088.
    15. Esposto, Stefano, 2008. "The possible role of nuclear energy in Italy," Energy Policy, Elsevier, vol. 36(5), pages 1584-1588, May.
    16. Qiang Lu & Zhi-Bo Zhang & Hang-Tao Liao & Xiao-Chu Yang & Chang-Qing Dong, 2012. "Lubrication Properties of Bio-Oil and Its Emulsions with Diesel Oil," Energies, MDPI, vol. 5(3), pages 1-11, March.
    17. Amer, Mohammad W. & Aljariri Alhesan, Jameel S. & Ibrahim, Sawsan & Qussay, Ghadeer & Marshall, Marc & Al-Ayed, Omar S., 2021. "Potential use of corn leaf waste for biofuel production in Jordan (physio-chemical study)," Energy, Elsevier, vol. 214(C).
    18. Li, Wei-Gang & Zhao, Wei & Liu, Hao-Miao & Ao, Lei & Liu, Kai-Shuai & Guan, Yin-Shuang & Zai, Shi-Feng & Chen, Shang-Long & Zong, Zhi-Min & Wei, Xian-Yong, 2018. "Supercritical ethanolysis of wheat stalk over calcium oxide," Renewable Energy, Elsevier, vol. 120(C), pages 300-305.
    19. Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
    20. Zhu, Guangyong & Zhu, Xian & Fan, Qi & Wan, Xueliang, 2011. "Recovery of biomass wastes by hydrolysis in sub-critical water," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 409-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:4:p:2215-2224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.