IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i4p2085-2088.html
   My bibliography  Save this article

Potential of waste palm cooking oil for catalyst-free biodiesel production

Author

Listed:
  • Tan, K.T.
  • Lee, K.T.
  • Mohamed, A.R.

Abstract

Disposal of waste palm cooking oil (WPCO) via an environmental-friendly route is of major importance in the quest for sustainable development. In this study, WPCO was utilized instead of refined vegetable oils as the source of triglycerides for biodiesel production. WPCO contains several impurities, such as water and free fatty acids, which limit its application in catalytic transesterification processes. Consequently, a catalyst-free process using supercritical methanol was employed to investigate the potential of WPCO as an economical feedstock for biodiesel production. The parameters that influence the reaction, including reaction time, temperature and the molar ratio of alcohol to oil, were investigated. For comparison purposes, refined palm oil (RPO) was also subjected to supercritical methanol reaction and it was found that both processes produced comparable optimum yields of 80% at their respective optimum conditions. Hence, it can be concluded that WPCO has high potential as an economical and practical future source of biodiesel.

Suggested Citation

  • Tan, K.T. & Lee, K.T. & Mohamed, A.R., 2011. "Potential of waste palm cooking oil for catalyst-free biodiesel production," Energy, Elsevier, vol. 36(4), pages 2085-2088.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:4:p:2085-2088
    DOI: 10.1016/j.energy.2010.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210002665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carraretto, C. & Macor, A. & Mirandola, A. & Stoppato, A. & Tonon, S., 2004. "Biodiesel as alternative fuel: Experimental analysis and energetic evaluations," Energy, Elsevier, vol. 29(12), pages 2195-2211.
    2. Haseeb, A.S.M.A. & Sia, S.Y. & Fazal, M.A. & Masjuki, H.H., 2010. "Effect of temperature on tribological properties of palm biodiesel," Energy, Elsevier, vol. 35(3), pages 1460-1464.
    3. Macor, A. & Pavanello, P., 2009. "Performance and emissions of biodiesel in a boiler for residential heating," Energy, Elsevier, vol. 34(12), pages 2025-2032.
    4. Pugazhvadivu, M. & Jeyachandran, K., 2005. "Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel," Renewable Energy, Elsevier, vol. 30(14), pages 2189-2202.
    5. Fernando, Sandun & Karra, Prashanth & Hernandez, Rafael & Jha, Saroj Kumar, 2007. "Effect of incompletely converted soybean oil on biodiesel quality," Energy, Elsevier, vol. 32(5), pages 844-851.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    2. Promraksa, Archw & Rakmak, Nirattisai & Schneider, Philip A., 2023. "Continuous flow extraction of biodiesel produced in a packed-bed reactor using supercritical carbon dioxide and tetrahydrofuran as solvents," Energy, Elsevier, vol. 280(C).
    3. Suhaiza Zailani & Mohammad Iranmanesh & Behzad Foroughi & Kwangyong Kim & Sunghyup Sean Hyun, 2020. "Effects of supply chain practices, integration and closed-loop supply chain activities on cost-containment of biodiesel," Review of Managerial Science, Springer, vol. 14(6), pages 1299-1319, December.
    4. Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
    5. Yang, Po-Ming & Lin, Yuan-Chung & Lin, Kuang C. & Jhang, Syu-Ruei & Chen, Shang-Cyuan & Wang, Chia-Chi & Lin, Ying-Chi, 2015. "Comparison of carbonyl compound emissions from a diesel engine generator fueled with blends of n-butanol, biodiesel and diesel," Energy, Elsevier, vol. 90(P1), pages 266-273.
    6. Jeeban Poudel & Malesh Shah & Sujeeta Karki & Sea Cheon Oh, 2017. "Qualitative Analysis of Transesterification of Waste Pig Fat in Supercritical Alcohols," Energies, MDPI, vol. 10(3), pages 1-13, February.
    7. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    8. Čuček, Lidija & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Total footprints-based multi-criteria optimisation of regional biomass energy supply chains," Energy, Elsevier, vol. 44(1), pages 135-145.
    9. Cao, Leichang & Wang, Jieni & Liu, Kuojin & Han, Sheng, 2014. "Ethyl acetoacetate: A potential bio-based diluent for improving the cold flow properties of biodiesel from waste cooking oil," Applied Energy, Elsevier, vol. 114(C), pages 18-21.
    10. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    11. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    12. Babazadeh, Reza, 2017. "Optimal design and planning of biodiesel supply chain considering non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1089-1100.
    13. Go, Alchris Woo & Tran Nguyen, Phuong Lan & Huynh, Lien Huong & Liu, Ying-Tsung & Sutanto, Sylviana & Ju, Yi-Hsu, 2014. "Catalyst free esterification of fatty acids with methanol under subcritical condition," Energy, Elsevier, vol. 70(C), pages 393-400.
    14. Chen, Kang-Shin & Lin, Yuan-Chung & Hsu, Kuo-Hsiang & Wang, Hsin-Kai, 2012. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system," Energy, Elsevier, vol. 38(1), pages 151-156.
    15. Abedin, M.J. & Kalam, M.A. & Masjuki, H.H. & Sabri, M.F.M. & Rahman, S.M. Ashrafur & Sanjid, A. & Fattah, I.M. Rizwanul, 2016. "Production of biodiesel from a non-edible source and study of its combustion, and emission characteristics: A comparative study with B5," Renewable Energy, Elsevier, vol. 88(C), pages 20-29.
    16. Jincheng Ding & Zheng Xia & Jie Lu, 2012. "Esterification and Deacidification of a Waste Cooking Oil (TAN 68.81 mg KOH/g) for Biodiesel Production," Energies, MDPI, vol. 5(8), pages 1-9, July.
    17. Ezebor, Francis & Khairuddean, Melati & Abdullah, Ahmad Zuhairi & Boey, Peng Lim, 2014. "Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters," Energy, Elsevier, vol. 70(C), pages 493-503.
    18. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    19. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    20. Ranjit, P.S. & Chintala, Venkateswarlu, 2022. "Direct utilization of preheated deep fried oil in an indirect injection compression ignition engine with waste heat recovery framework," Energy, Elsevier, vol. 242(C).
    21. Ng, Wendy Pei Qin & Lam, Hon Loong & Yusup, Suzana, 2013. "Supply network synthesis on rubber seed oil utilisation as potential biofuel feedstock," Energy, Elsevier, vol. 55(C), pages 82-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Effect of temperature on the corrosion behavior of mild steel upon exposure to palm biodiesel," Energy, Elsevier, vol. 36(5), pages 3328-3334.
    2. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    3. Haseeb, A.S.M.A. & Jun, T.S. & Fazal, M.A. & Masjuki, H.H., 2011. "Degradation of physical properties of different elastomers upon exposure to palm biodiesel," Energy, Elsevier, vol. 36(3), pages 1814-1819.
    4. Ghorbani, Afshin & Bazooyar, Bahamin & Shariati, Ahmad & Jokar, Seyyed Mohammad & Ajami, Hadi & Naderi, Ali, 2011. "A comparative study of combustion performance and emission of biodiesel blends and diesel in an experimental boiler," Applied Energy, Elsevier, vol. 88(12), pages 4725-4732.
    5. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    6. Basha, Syed Ameer & Gopal, K. Raja & Jebaraj, S., 2009. "A review on biodiesel production, combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1628-1634, August.
    7. Deng, Xin & Fang, Zhen & Liu, Yun-hu & Yu, Chang-Liu, 2011. "Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst," Energy, Elsevier, vol. 36(2), pages 777-784.
    8. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    9. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    10. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.
    11. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2012. "Degradation of automotive materials in palm biodiesel," Energy, Elsevier, vol. 40(1), pages 76-83.
    12. Muralidharan, K. & Vasudevan, D., 2011. "Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends," Applied Energy, Elsevier, vol. 88(11), pages 3959-3968.
    13. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    14. Rashid, Umer & Rehman, Hafiz Abdul & Hussain, Irshad & Ibrahim, Muhammad & Haider, Muhammad Sajjad, 2011. "Muskmelon (Cucumis melo) seed oil: A potential non-food oil source for biodiesel production," Energy, Elsevier, vol. 36(9), pages 5632-5639.
    15. Powell, E.E. & Hill, G.A., 2010. "Carbon dioxide neutral, integrated biofuel facility," Energy, Elsevier, vol. 35(12), pages 4582-4586.
    16. Tesfa, B. & Mishra, R. & Zhang, C. & Gu, F. & Ball, A.D., 2013. "Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel," Energy, Elsevier, vol. 51(C), pages 101-115.
    17. Nasha Wei & Zhi Chen & Yuandong Xu & Fengshou Gu & Andrew Ball, 2021. "The Investigation into the Tribological Impact of Alternative Fuels on Engines Based on Acoustic Emission," Energies, MDPI, vol. 14(8), pages 1-20, April.
    18. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sharma, Meeta & Malhotra, R.K., 2009. "Influence of metal contaminants on oxidation stability of Jatropha biodiesel," Energy, Elsevier, vol. 34(9), pages 1271-1275.
    19. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    20. Peng-Lim, Boey & Ganesan, Shangeetha & Maniam, Gaanty Pragas & Khairuddean, Melati, 2012. "Sequential conversion of high free fatty acid oils into biodiesel using a new catalyst system," Energy, Elsevier, vol. 46(1), pages 132-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:4:p:2085-2088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.