IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v121y2018icp623-631.html
   My bibliography  Save this article

Water emulsified hybrid pongamia biodiesel as a modified fuel for the experimental analysis of performance, combustion and emission characteristics of a direct injection diesel engine

Author

Listed:
  • Perumal, Varatharaju
  • Ilangkumaran, M.

Abstract

Biodiesel is widely accepted as substitute fuel for diesel engine by scientist, engineers and researchers for its superior fuel quality compared to diesel in terms of emission. The environmental and social benefits got from biodiesel attract almost all section of people. The use of biodiesel in diesel engine reduces the green house gases like CO, HC and PM emission considerably, but the smoke and NOx emissions are high compare to diesel. In order to reduce the smoke and NOx emissions caused by biodiesel in diesel engine, an experimental study was conducted by using water emulsified pongamia biodiesel in a four stroke direct injection diesel engine. The result revealed 9% increase in BSFC and 5% decrease in BTE with a reduction of around 32% in NOx emission. The smoke has been reduced to 7.4%, the emission of CO and HC has been reduced to a marginal value of 2.3% and 1% respectively compared with that of B20 blend.

Suggested Citation

  • Perumal, Varatharaju & Ilangkumaran, M., 2018. "Water emulsified hybrid pongamia biodiesel as a modified fuel for the experimental analysis of performance, combustion and emission characteristics of a direct injection diesel engine," Renewable Energy, Elsevier, vol. 121(C), pages 623-631.
  • Handle: RePEc:eee:renene:v:121:y:2018:i:c:p:623-631
    DOI: 10.1016/j.renene.2018.01.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118300661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdolsaeid Ganjehkaviri & Mohammad Nazri Mohd Jaafar & Seyed Ehsan Hosseini & Anas Basri Musthafa, 2016. "Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner," Energies, MDPI, vol. 9(2), pages 1-10, February.
    2. Pugazhvadivu, M. & Jeyachandran, K., 2005. "Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel," Renewable Energy, Elsevier, vol. 30(14), pages 2189-2202.
    3. Basili, Marcello & Fontini, Fulvio, 2012. "Biofuel from Jatropha curcas: Environmental sustainability and option value," Ecological Economics, Elsevier, vol. 78(C), pages 1-8.
    4. Palash, S.M. & Kalam, M.A. & Masjuki, H.H. & Masum, B.M. & Rizwanul Fattah, I.M. & Mofijur, M., 2013. "Impacts of biodiesel combustion on NOx emissions and their reduction approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 473-490.
    5. Perumal, Varatharaju & Ilangkumaran, M., 2017. "Experimental analysis of engine performance, combustion and emission using pongamia biodiesel as fuel in CI engine," Energy, Elsevier, vol. 129(C), pages 228-236.
    6. Gnanasekaran, Sakthivel & Saravanan, N. & Ilangkumaran, M., 2016. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel," Energy, Elsevier, vol. 116(P1), pages 1218-1229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    2. Dinesha, P. & Kumar, Shiva & Rosen, Marc A., 2019. "Combined effects of water emulsion and diethyl ether additive on combustion performance and emissions of a compression ignition engine using biodiesel blends," Energy, Elsevier, vol. 179(C), pages 928-937.
    3. Rai, Ranjeet Kumar & Sahoo, Rashmi Rekha, 2021. "Impact of different shape based hybrid nano additives in emulsion fuel for exergetic, energetic, and sustainability analysis of diesel engine," Energy, Elsevier, vol. 214(C).
    4. Gowrishankar, Sudarshan & Krishnasamy, Anand, 2023. "Emulsification – A promising approach to improve performance and reduce exhaust emissions of a biodiesel fuelled light-duty diesel engine," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    2. Masera, Kemal & Hossain, Abul Kalam, 2023. "Advancement of biodiesel fuel quality and NOx emission control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Çeli̇k, Mehmet & Bayindirli, Cihan, 2020. "Enhancement performance and exhaust emissions of rapeseed methyl ester by using n-hexadecane and n-hexane fuel additives," Energy, Elsevier, vol. 202(C).
    4. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Kodate, Shankar Vitthal & Satyanarayana Raju, Pragada & Yadav, Ajay Kumar & Kumar, G.N., 2021. "Investigation of preheated Dhupa seed oil biodiesel as an alternative fuel on the performance, emission and combustion in a CI engine," Energy, Elsevier, vol. 231(C).
    6. Wongwuttanasatian, Tanakorn & Jookjantra, Kittichai, 2020. "Effect of dual-frequency pulsed ultrasonic excitation and catalyst size for biodiesel production," Renewable Energy, Elsevier, vol. 152(C), pages 1220-1226.
    7. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    8. Portugal-Pereira, Joana & Nakatani, Jun & Kurisu, Kiyo H. & Hanaki, Keisuke, 2015. "Comparative energy and environmental analysis of Jatropha bioelectricity versus biodiesel production in remote areas," Energy, Elsevier, vol. 83(C), pages 284-293.
    9. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    10. Loretta Mastroeni & Alessandro Mazzoccoli & Greta Quaresima & Pierluigi Vellucci, 2021. "Wavelet analysis and energy-based measures for oil-food price relationship as a footprint of financialisation effect," Papers 2104.11891, arXiv.org, revised Mar 2022.
    11. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    12. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    13. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    14. Ramalingam, Senthil & Rajendran, Silambarasan & Ganesan, Pranesh & Govindasamy, Mohan, 2018. "Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 775-788.
    15. Dussadee Rattanaphra & Sittinun Tawkaew & Sinsupha Chuichulcherm & Wilasinee Kingkam & Sasikarn Nuchdang & Kittiwan Kitpakornsanti & Unchalee Suwanmanee, 2023. "Evaluation of Life Cycle Assessment of Jatropha Biodiesel Processed by Esterification of Thai Domestic Rare Earth Oxide Catalysts," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    16. Monirul, I.M. & Kalam, M.A. & Masjuki, H.H. & Zulkifli, N.W.M. & Shahir, S.A. & Mosarof, M.H. & Ruhul, A.M., 2017. "Influence of poly(methyl acrylate) additive on cold flow properties of coconut biodiesel blends and exhaust gas emissions," Renewable Energy, Elsevier, vol. 101(C), pages 702-712.
    17. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    18. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    19. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    20. Sergejus Lebedevas & Laurencas Raslavičius, 2021. "Prognostic Assessment of the Performance Parameters for the Industrial Diesel Engines Operated with Microalgae Oil," Sustainability, MDPI, vol. 13(11), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:121:y:2018:i:c:p:623-631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.