IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i5p724-731.html
   My bibliography  Save this article

Renewable energy benefits with conversion of woody residues to pellets

Author

Listed:
  • Di Giacomo, G.
  • Taglieri, L.

Abstract

In the frame of an Interreg IIIC Network-Operation named RegEnergy, that unites 18 partners from 11 countries of Europe, the feasibility of using the woody by-products for heating purpose in a typical Mediterranean region was investigated. Focusing on the Abruzzo Region as representative sample area, it came out that a significant amount of the above mentioned renewable energetic material is annually available as a consequence of well-consolidated and economically significant agro-industrial activities, forest maintenance and industrial wood production and transformation. In particular, it was found that the total amount of woody residues, as dry substance, are more than 700kt/a, with 30% resulting from pruning activities related to the cultivation of about 360km2 of vineyards and 450km2 of olive-groves; these residues are concentrated in the hilly part of the region close to the Adriatic sea coast. Starting by this pleasant situation, the feasibility of a properly localized wood pellets production plant was supported by both the economic and energetic analysis. Additional suggestions related to optimal plant localization and to the best use of the woody pellets as substitute of natural gas for heating purposes were reported along with the positive impact of the whole action on the quality of the environment and on the recovery of soil fertility.

Suggested Citation

  • Di Giacomo, G. & Taglieri, L., 2009. "Renewable energy benefits with conversion of woody residues to pellets," Energy, Elsevier, vol. 34(5), pages 724-731.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:5:p:724-731
    DOI: 10.1016/j.energy.2008.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420800193X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Skoulou, V. & Zabaniotou, A., 2007. "Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1698-1719, October.
    2. Koroneos, C. & Fokaidis, P. & Moussiopoulos, N., 2005. "Cyprus energy system and the use of renewable energy sources," Energy, Elsevier, vol. 30(10), pages 1889-1901.
    3. Bernetti, Iacopo & Fagarazzi, Claudio & Fratini, Roberto, 2004. "A methodology to anaylse the potential development of biomass-energy sector: an application in Tuscany," Forest Policy and Economics, Elsevier, vol. 6(3-4), pages 415-432, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmood Ebadian & Shahab Sokhansanj & David Lee & Alyssa Klein & Lawrence Townley-Smith, 2021. "Evaluating the Economic Viability of Agricultural Pellets to Supplement the Current Global Wood Pellets Supply for Bioenergy Production," Energies, MDPI, vol. 14(8), pages 1-19, April.
    2. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Nati, Carla & Boschiero, Martina & Picchi, Gianni & Mastrolonardo, Giovanni & Kelderer, Markus & Zerbe, Stefan, 2018. "Energy performance of a new biomass harvester for recovery of orchard wood wastes as alternative to mulching," Renewable Energy, Elsevier, vol. 124(C), pages 121-128.
    4. Proskurina, Svetlana & Alakangas, Eija & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2017. "A survey analysis of the wood pellet industry in Finland: Future perspectives," Energy, Elsevier, vol. 118(C), pages 692-704.
    5. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2013. "A simulation model for the design and analysis of wood pellet supply chains," Applied Energy, Elsevier, vol. 111(C), pages 1239-1249.
    6. Chouchene, Ajmia & Jeguirim, Mejdi & Favre-Reguillon, Alain & Trouvé, Gwenaelle & Le Buzit, Gérard & Khiari, Besma & Zagrouba, Fethi, 2012. "Energetic valorisation of olive mill wastewater impregnated on low cost absorbent: Sawdust versus olive solid waste," Energy, Elsevier, vol. 39(1), pages 74-81.
    7. Messineo, Antonio & Volpe, Roberto & Marvuglia, Antonino, 2012. "Ligno-cellulosic biomass exploitation for power generation: A case study in sicily," Energy, Elsevier, vol. 45(1), pages 613-625.
    8. Ilaria Zambon & Fabrizio Colosimo & Danilo Monarca & Massimo Cecchini & Francesco Gallucci & Andrea Rosario Proto & Richard Lord & Andrea Colantoni, 2016. "An Innovative Agro-Forestry Supply Chain for Residual Biomass: Physicochemical Characterisation of Biochar from Olive and Hazelnut Pellets," Energies, MDPI, vol. 9(7), pages 1-11, July.
    9. Christoforou, Elias & Kylili, Angeliki & Fokaides, Paris A., 2016. "Technical and economical evaluation of olive mills solid waste pellets," Renewable Energy, Elsevier, vol. 96(PA), pages 33-41.
    10. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    11. Shi, Yan & Ge, Ying & Chang, Jie & Shao, Hongbo & Tang, Yuli, 2013. "Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 432-437.
    12. Franceschinis, Cristiano & Thiene, Mara & Scarpa, Riccardo & Rose, John & Moretto, Michele & Cavalli, Raffaele, 2017. "Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory," Energy, Elsevier, vol. 125(C), pages 313-326.
    13. Hu, Jianjun & Lei, Tingzhou & Wang, Zhiwei & Yan, Xiaoyu & Shi, Xinguang & Li, Zaifeng & He, Xiaofeng & Zhang, Quanguo, 2014. "Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk," Energy, Elsevier, vol. 64(C), pages 557-566.
    14. Pradhan, Priyabrata & Gadkari, Prabodh & Mahajani, Sanjay M. & Arora, Amit, 2019. "A conceptual framework and techno-economic analysis of a pelletization-gasification based bioenergy system," Applied Energy, Elsevier, vol. 249(C), pages 1-13.
    15. Song, Han & Starfelt, Fredrik & Daianova, Lilia & Yan, Jinyue, 2012. "Influence of drying process on the biomass-based polygeneration system of bioethanol, power and heat," Applied Energy, Elsevier, vol. 90(1), pages 32-37.
    16. Đerčan, Bojan & Lukić, Tamara & Bubalo-Živković, Milka & Đurđev, Branislav & Stojsavljević, Rastislav & Pantelić, Milana, 2012. "Possibility of efficient utilization of wood waste as a renewable energy resource in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1516-1527.
    17. Feng, Cheng & Yu, Xinxin & Tan, Hanqiu & Liu, Tian & Hu, Tianyu & Zhang, Zhuoyan & Qiu, Shi & Chen, Longjian, 2013. "The economic feasibility of a crop-residue densification plant: A case study for the city of Jinzhou in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 172-180.
    18. Maaz Hassan & Naveed Usman & Majid Hussain & Adnan Yousaf & Muhammad Aamad Khattak & Sidra Yousaf & Rankeshwarnath Sanjay Mishr & Sana Ahmad & Fariha Rehman & Ahmad Rashedi, 2023. "Environmental and Socio-Economic Assessment of Biomass Pellets Biofuel in Hazara Division, Pakistan," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    19. Shi, Yan & Du, Yuanyuan & Yang, Guofu & Tang, Yuli & Fan, Likun & Zhang, Jun & Lu, Yijun & Ge, Ying & Chang, Jie, 2013. "The use of green waste from tourist attractions for renewable energy production: The potential and policy implications," Energy Policy, Elsevier, vol. 62(C), pages 410-418.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    2. Cozzi, Mario & Viccaro, Mauro & Di Napoli, Francesco & Fagarazzi, Claudio & Tirinnanzi, Alessandro & Romano, Severino, 2015. "A spatial analysis model to assess the feasibility of short rotation forestry fertigated with urban wastewater: Basilicata region case study," Agricultural Water Management, Elsevier, vol. 159(C), pages 185-196.
    3. Papaioannou, Panagiotis & Georgiadis, Georgios & Nikolaidou, Anastasia & Politis, Ioannis, 2020. "Public Transport tendering and contracting arrangements in countries under regulatory transition: The case of Cyprus," Research in Transportation Economics, Elsevier, vol. 83(C).
    4. Nektarios A. Michail & Christos S. Savva, 2021. "Electricity consumption and economic activity in Cyprus using an asymmetric cointegration technique," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 15(2), pages 26-41, December.
    5. Bujak, Janusz Wojciech, 2015. "New insights into waste management – Meat industry," Renewable Energy, Elsevier, vol. 83(C), pages 1174-1186.
    6. Janusz Bujak & Piotr Sitarz & Magdalena Nakielska, 2020. "Multidimensional Analysis of Meat and Bone Meal (MBM) Incineration Process," Energies, MDPI, vol. 13(21), pages 1-9, November.
    7. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Marco Manzone & Fabrizio Gioelli & Paolo Balsari, 2017. "Kiwi Clear‐Cut: First Evaluation of Recovered Biomass for Energy Production," Energies, MDPI, vol. 10(11), pages 1-12, November.
    9. Andrea Acampora & Vincenzo Civitarese & Giulio Sperandio & Negar Rezaei, 2021. "Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning," Energies, MDPI, vol. 14(14), pages 1-15, July.
    10. Lerkkasemsan, Nuttapol, 2017. "Fuzzy logic-based predictive model for biomass pyrolysis," Applied Energy, Elsevier, vol. 185(P2), pages 1019-1030.
    11. Avcıoğlu, A.O. & Dayıoğlu, M.A. & Türker, U., 2019. "Assessment of the energy potential of agricultural biomass residues in Turkey," Renewable Energy, Elsevier, vol. 138(C), pages 610-619.
    12. Nunes, L.J.R. & Causer, T.P. & Ciolkosz, D., 2020. "Biomass for energy: A review on supply chain management models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    13. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    14. Tao, Guangcan & Geladi, Paul & Lestander, Torbjörn A. & Xiong, Shaojun, 2012. "Biomass properties in association with plant species and assortments. II: A synthesis based on literature data for ash elements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3507-3522.
    15. Claudio Fagarazzi & Alessandro Tirinnanzi & Mario Cozzi & Francesco Di Napoli & Severino Romano, 2014. "The Forest Energy Chain in Tuscany: Economic Feasibility and Environmental Effects of Two Types of Biomass District Heating Plant," Energies, MDPI, vol. 7(9), pages 1-23, September.
    16. Svanberg, Martin & Ellis, Joanne & Lundgren, Joakim & Landälv, Ingvar, 2018. "Renewable methanol as a fuel for the shipping industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1217-1228.
    17. Karampinis, E. & Nikolopoulos, N. & Nikolopoulos, A. & Grammelis, P. & Kakaras, E., 2012. "Numerical investigation Greek lignite/cardoon co-firing in a tangentially fired furnace," Applied Energy, Elsevier, vol. 97(C), pages 514-524.
    18. Demetriou, E. & Mallouppas, G. & Hadjistassou, C., 2021. "Embracing carbon neutral electricity and transportation sectors in Cyprus," Energy, Elsevier, vol. 229(C).
    19. Ayadi, Manel & Awad, Sary & Villot, Audrey & Abderrabba, Manef & Tazerout, Mohand, 2021. "Heterogeneous acid catalyst preparation from olive pomace and its use for olive pomace oil esterification," Renewable Energy, Elsevier, vol. 165(P2), pages 1-13.
    20. Menicou, Michalis & Vassiliou, Vassos, 2010. "Prospective energy needs in Mediterranean offshore aquaculture: Renewable and sustainable energy solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3084-3091, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:5:p:724-731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.