IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6772-d1245791.html
   My bibliography  Save this article

Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review

Author

Listed:
  • Giuseppe Maggiotto

    (Department of Engineering for Innovation, University of Salento, SP per Monteroni, 73100 Lecce, Italy)

  • Gianpiero Colangelo

    (Department of Engineering for Innovation, University of Salento, SP per Monteroni, 73100 Lecce, Italy)

  • Marco Milanese

    (Department of Engineering for Innovation, University of Salento, SP per Monteroni, 73100 Lecce, Italy)

  • Arturo de Risi

    (Department of Engineering for Innovation, University of Salento, SP per Monteroni, 73100 Lecce, Italy)

Abstract

The use of biomass can be a strategic way to realize a carbon-neutral energy plan, ensuring a fuel feedstock. Residual biomass arising from pruning is demonstrated to be an important energy resource in terms of quantity and quality. In the Salento peninsula, Apulia Region, in the south of Italy, a dramatic outbreak of Xylella fastidiosa has decimated olive trees since 2013, gaining a considerable amount of wood biomass. This paper, starting from the need to find a way to optimize the use of this available stock, reviews the main technologies on the utilization of olive wood for energy purposes. In particular, processes and products are here described, and an energy analysis compares lower heating value (LHV), higher heating value (HHV), mass yield, process operating conditions, and energy generated and spent by the process in order to find the most effective technology in order to optimize the energy use of olive biomass. The conclusions show the advantages and disadvantages of each technology. Pyrolysis performs well, showing the best results for both char HHV and syngas yield under different operating conditions. Gasification seems to be the most appropriate among conversion technologies to optimize olive tree pruning for energy purposes, as it can be used to produce both electrical and thermal energy. In terms of economic valorization, char is the most promising material representing a value-added product, the quality and versatility of which ranges from fuel to soil improvers and additives for the construction of supercapacitors. Conversely, its disadvantages are mainly represented by high ash content, which can slightly decrease the boiler efficiency. Finally, the amount of alkali metals can produce several problems, such as fouling, slagging, corrosion, etc., posing a challenge for combustion control and pollutant minimization.

Suggested Citation

  • Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6772-:d:1245791
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jingjing & Dou, Binlin & Zhang, Hua & Zhang, Hao & Chen, Haisheng & Xu, Yujie & Wu, Chunfei, 2021. "Pyrolysis characteristics and non-isothermal kinetics of waste wood biomass," Energy, Elsevier, vol. 226(C).
    2. Amirante, Riccardo & Clodoveo, Maria Lisa & Distaso, Elia & Ruggiero, Francesco & Tamburrano, Paolo, 2016. "A tri-generation plant fuelled with olive tree pruning residues in Apulia: An energetic and economic analysis," Renewable Energy, Elsevier, vol. 89(C), pages 411-421.
    3. Barbosa, Alexandro & Brusca, Isabel, 2015. "Governance structures and their impact on tariff levels of Brazilian water and sanitation corporations," Utilities Policy, Elsevier, vol. 34(C), pages 94-105.
    4. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    5. Manfredi Picciotto Maniscalco & Maurizio Volpe & Antonio Messineo, 2020. "Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review," Energies, MDPI, vol. 13(16), pages 1-26, August.
    6. Ponce, M. Federico & Mamani, Arminda & Jerez, Florencia & Castilla, Josué & Ramos, Pamela B. & Acosta, Gerardo G. & Sardella, M. Fabiana & Bavio, Marcela A., 2022. "Activated carbon from olive tree pruning residue for symmetric solid-state supercapacitor," Energy, Elsevier, vol. 260(C).
    7. Pablo J. Arauzo & Maciej P. Olszewski & Andrea Kruse, 2018. "Hydrothermal Carbonization Brewer’s Spent Grains with the Focus on Improving the Degradation of the Feedstock," Energies, MDPI, vol. 11(11), pages 1-15, November.
    8. González-Arias, J. & Gómez, X. & González-Castaño, M. & Sánchez, M.E. & Rosas, J.G. & Cara-Jiménez, J., 2022. "Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning," Energy, Elsevier, vol. 238(PC).
    9. Andrea Colantoni & Mauro Villarini & Vera Marcantonio & Francesco Gallucci & Massimo Cecchini, 2019. "Performance Analysis of a Small-Scale ORC Trigeneration System Powered by the Combustion of Olive Pomace," Energies, MDPI, vol. 12(12), pages 1-12, June.
    10. Ahn, Joon & Kim, Hyouck Ju, 2020. "Combustion process of a Korean wood pellet at a low temperature," Renewable Energy, Elsevier, vol. 145(C), pages 391-398.
    11. Bernetti, Iacopo & Fagarazzi, Claudio & Fratini, Roberto, 2004. "A methodology to anaylse the potential development of biomass-energy sector: an application in Tuscany," Forest Policy and Economics, Elsevier, vol. 6(3-4), pages 415-432, June.
    12. Lin, Yi-Li & Zheng, Nai-Yun & Lin, Ching-Shi, 2021. "Repurposing Washingtonia filifera petiole and Sterculia foetida follicle waste biomass for renewable energy through torrefaction," Energy, Elsevier, vol. 223(C).
    13. Kougioumtzis, Michael Alexandros & Kanaveli, Ioanna Panagiota & Karampinis, Emmanouil & Grammelis, Panagiotis & Kakaras, Emmanuel, 2021. "Combustion of olive tree pruning pellets versus sunflower husk pellets at industrial boiler. Monitoring of emissions and combustion efficiency," Renewable Energy, Elsevier, vol. 171(C), pages 516-525.
    14. Samuel Carrasco & Ernesto Pino-Cortés & Andrés Barra-Marín & Alejandro Fierro-Gallegos & Marcelo León, 2022. "Use of Hydrochar Produced by Hydrothermal Carbonization of Lignocellulosic Biomass for Thermal Power Plants in Chile: A Techno-Economic and Environmental Study," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    15. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    16. Parascanu, M.M. & Puig-Gamero, M. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2019. "Comparison of three Mexican biomasses valorization through combustion and gasification: Environmental and economic analysis," Energy, Elsevier, vol. 189(C).
    17. Alessandro Suardi & Francesco Latterini & Vincenzo Alfano & Nadia Palmieri & Simone Bergonzoli & Luigi Pari, 2020. "Analysis of the Work Productivity and Costs of a Stationary Chipper Applied to the Harvesting of Olive Tree Pruning for Bio-Energy Production," Energies, MDPI, vol. 13(6), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonardo Marchiori & Maria Vitoria Morais & André Studart & António Albuquerque & Luis Andrade Pais & Luis Ferreira Gomes & Victor Cavaleiro, 2023. "Energy Harvesting Opportunities in Geoenvironmental Engineering," Energies, MDPI, vol. 17(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Arias, J. & Gómez, X. & González-Castaño, M. & Sánchez, M.E. & Rosas, J.G. & Cara-Jiménez, J., 2022. "Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning," Energy, Elsevier, vol. 238(PC).
    2. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    3. Michela Lucian & Maurizio Volpe & Luca Fiori, 2019. "Hydrothermal Carbonization Kinetics of Lignocellulosic Agro-Wastes: Experimental Data and Modeling," Energies, MDPI, vol. 12(3), pages 1-20, February.
    4. Xu, Jiaqing & Zhang, Shouyu & Shi, Yue & Zhang, Peizheng & Huang, Dongdong & Lin, Chunyu & Wu, Yuxin, 2022. "Upgrading the wood vinegar prepared from the pyrolysis of biomass wastes by hydrothermal pretreatment," Energy, Elsevier, vol. 244(PA).
    5. Andrea Acampora & Vincenzo Civitarese & Giulio Sperandio & Negar Rezaei, 2021. "Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning," Energies, MDPI, vol. 14(14), pages 1-15, July.
    6. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    7. Francesco Latterini & Walter Stefanoni & Alessandro Suardi & Vincenzo Alfano & Simone Bergonzoli & Nadia Palmieri & Luigi Pari, 2020. "A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs," Energies, MDPI, vol. 13(13), pages 1-17, July.
    8. Antonio Picone & Maurizio Volpe & Antonio Messineo, 2021. "Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges," Energies, MDPI, vol. 14(10), pages 1-14, May.
    9. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    10. Lourinho, Gonçalo & Brito, Paulo, 2015. "Assessment of biomass energy potential in a region of Portugal (Alto Alentejo)," Energy, Elsevier, vol. 81(C), pages 189-201.
    11. Zhang, Congyu & Chen, Wei-Hsin & Saravanakumar, Ayyadurai & Lin, Kun-Yi Andrew & Zhang, Ying, 2024. "Comparison of torrefaction and hydrothermal carbonization of high-moisture microalgal feedstock," Renewable Energy, Elsevier, vol. 225(C).
    12. Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.
    13. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    14. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    15. Mäkelä, Mikko & Yoshikawa, Kunio, 2016. "Simulating hydrothermal treatment of sludge within a pulp and paper mill," Applied Energy, Elsevier, vol. 173(C), pages 177-183.
    16. Pablo J. Arauzo & María Atienza-Martínez & Javier Ábrego & Maciej P. Olszewski & Zebin Cao & Andrea Kruse, 2020. "Combustion Characteristics of Hydrochar and Pyrochar Derived from Digested Sewage Sludge," Energies, MDPI, vol. 13(16), pages 1-15, August.
    17. Abdulyekeen, Kabir Abogunde & Daud, Wan Mohd Ashri Wan & Patah, Muhamad Fazly Abdul, 2024. "Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and te," Energy, Elsevier, vol. 293(C).
    18. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    19. Devaraja, Udya Madhavi Aravindi & Senadheera, Sachini Supunsala & Gunarathne, Duleeka Sandamali, 2022. "Torrefaction severity and performance of Rubberwood and Gliricidia," Renewable Energy, Elsevier, vol. 195(C), pages 1341-1353.
    20. Cozzi, Mario & Viccaro, Mauro & Di Napoli, Francesco & Fagarazzi, Claudio & Tirinnanzi, Alessandro & Romano, Severino, 2015. "A spatial analysis model to assess the feasibility of short rotation forestry fertigated with urban wastewater: Basilicata region case study," Agricultural Water Management, Elsevier, vol. 159(C), pages 185-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6772-:d:1245791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.