IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v120y2020ics1364032119308640.html
   My bibliography  Save this article

Biomass for energy: A review on supply chain management models

Author

Listed:
  • Nunes, L.J.R.
  • Causer, T.P.
  • Ciolkosz, D.

Abstract

The present study reviews the status of research on biomass supply chain modeling. Biomass has become increasingly important as a renewable alternative energy source. One of the most critical aspects associated with the use of biomass is its supply chain and all the elements that are part of it. Indeed, in order for the use of this type of energy resource to become viable, its supply chain, from collection and transport to storage and distribution, needs to be well structured and optimized. Modeling is a critical step in developing understanding that leads to improved supply chain efficiency. Thus far, investigations that utilize supply chain models have focused on assessing specific supply chain scenarios, usually with an objective of minimizing cost. Significant opportunity exists to improve and expand the modeling process to allow for efficient supply chain design and operation. During this article will be analyzed several models presented by recent research that approach different situations and scenarios. At the end it is shown that biomass for energy supply chain models must include the analysis of several different variables and include the main disadvantages of its use as well.

Suggested Citation

  • Nunes, L.J.R. & Causer, T.P. & Ciolkosz, D., 2020. "Biomass for energy: A review on supply chain management models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  • Handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308640
    DOI: 10.1016/j.rser.2019.109658
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119308640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mitali Sarkar & Biswajit Sarkar & Muhammad Waqas Iqbal, 2018. "Effect of Energy and Failure Rate in a Multi-Item Smart Production System," Energies, MDPI, vol. 11(11), pages 1-21, October.
    2. van Dyken, Silke & Bakken, Bjorn H. & Skjelbred, Hans I., 2010. "Linear mixed-integer models for biomass supply chains with transport, storage and processing," Energy, Elsevier, vol. 35(3), pages 1338-1350.
    3. Mitali Sarkar & Biswajit Sarkar, 2019. "Optimization of Safety Stock under Controllable Production Rate and Energy Consumption in an Automated Smart Production Management," Energies, MDPI, vol. 12(11), pages 1-16, May.
    4. Madlener, Reinhard & Bachhiesl, Mario, 2007. "Socio-economic drivers of large urban biomass cogeneration: Sustainable energy supply for Austria's capital Vienna," Energy Policy, Elsevier, vol. 35(2), pages 1075-1087, February.
    5. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    6. Sedjo, Roger A., 1997. "The economics of forest-based biomass supply," Energy Policy, Elsevier, vol. 25(6), pages 559-566, May.
    7. Leduc, S. & Starfelt, F. & Dotzauer, E. & Kindermann, G. & McCallum, I. & Obersteiner, M. & Lundgren, J., 2010. "Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden," Energy, Elsevier, vol. 35(6), pages 2709-2716.
    8. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    9. Perpiñá, C. & Alfonso, D. & Pérez-Navarro, A. & Peñalvo, E. & Vargas, C. & Cárdenas, R., 2009. "Methodology based on Geographic Information Systems for biomass logistics and transport optimisation," Renewable Energy, Elsevier, vol. 34(3), pages 555-565.
    10. Vera, David & Carabias, Julio & Jurado, Francisco & Ruiz-Reyes, Nicolás, 2010. "A Honey Bee Foraging approach for optimal location of a biomass power plant," Applied Energy, Elsevier, vol. 87(7), pages 2119-2127, July.
    11. Moya Kneafsey & Laura Venn & Ulrich Schmutz & Balász Bálint & Liz Trenchard & Trish Eyden-Woods & Elizabeth Bos & Gemma Sutton & Matthew Blackett, 2013. "Short Food Supply Chains and Local Food Systems in the EU. A State of Play of their Socio-Economic Characteristics," JRC Research Reports JRC80420, Joint Research Centre.
    12. Sarkar, Biswajit & Ganguly, Baishakhi & Sarkar, Mitali & Pareek, Sarla, 2016. "Effect of variable transportation and carbon emission in a three-echelon supply chain model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 112-128.
    13. Chikan, Attila, 2001. "Integration of production and logistics -- in principle, in practice and in education," International Journal of Production Economics, Elsevier, vol. 69(2), pages 129-140, January.
    14. Gigler, J. K. & Hendrix, E. M. T. & Heesen, R. A. & van den Hazelkamp, V. G. W. & Meerdink, G., 2002. "On optimisation of agri chains by dynamic programming," European Journal of Operational Research, Elsevier, vol. 139(3), pages 613-625, June.
    15. Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
    16. Gasol, Carles M. & Martínez, Sergio & Rigola, Miquel & Rieradevall, Joan & Anton, Assumpció & Carrasco, Juan & Ciria, Pilar & Gabarrell, Xavier, 2009. "Feasibility assessment of poplar bioenergy systems in the Southern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 801-812, May.
    17. Robert Perlack, Robert & Eaton, Lawrence & Thurhollow, Anthony & Langholtz, Matt & De La Torre Ugarte, Daniel, 2011. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry," MPRA Paper 89324, University Library of Munich, Germany, revised 2011.
    18. Chee K. Ng & Janet Kiholm Smith & Richard L. Smith, 1999. "Evidence on the Determinants of Credit Terms Used in Interfirm Trade," Journal of Finance, American Finance Association, vol. 54(3), pages 1109-1129, June.
    19. Pretty, J. N. & Brett, C. & Gee, D. & Hine, R. E. & Mason, C. F. & Morison, J. I. L. & Raven, H. & Rayment, M. D. & van der Bijl, G., 2000. "An assessment of the total external costs of UK agriculture," Agricultural Systems, Elsevier, vol. 65(2), pages 113-136, August.
    20. Bruglieri, Maurizio & Liberti, Leo, 2008. "Optimal running and planning of a biomass-based energy production process," Energy Policy, Elsevier, vol. 36(7), pages 2430-2438, July.
    21. Frombo, Francesco & Minciardi, Riccardo & Robba, Michela & Sacile, Roberto, 2009. "A decision support system for planning biomass-based energy production," Energy, Elsevier, vol. 34(3), pages 362-369.
    22. Lawrence D. Mapemba & Francis M. Epplin & Charles M. Taliaferro & Raymond L. Huhnke, 2007. "Biorefinery Feedstock Production on Conservation Reserve Program Land," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(2), pages 227-246.
    23. Chau, J. & Sowlati, T. & Sokhansanj, S. & Preto, F. & Melin, S. & Bi, X., 2009. "Techno-economic analysis of wood biomass boilers for the greenhouse industry," Applied Energy, Elsevier, vol. 86(3), pages 364-371, March.
    24. Lawrence D. Mapemba & Francis M. Epplin & Charles M. Taliaferro & Raymond L. Huhnke, 2007. "Biorefinery Feedstock Production on Conservation Reserve Program Land," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(2), pages 227-246.
    25. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Wood pellets as a sustainable energy alternative in Portugal," Renewable Energy, Elsevier, vol. 85(C), pages 1011-1016.
    26. Gunnarsson, Helene & Ronnqvist, Mikael & Lundgren, Jan T., 2004. "Supply chain modelling of forest fuel," European Journal of Operational Research, Elsevier, vol. 158(1), pages 103-123, October.
    27. Skoulou, V. & Zabaniotou, A., 2007. "Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1698-1719, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    2. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    3. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    4. Sharma, B. & Ingalls, R.G. & Jones, C.L. & Khanchi, A., 2013. "Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 608-627.
    5. Akhtari, Shaghaygh & Sowlati, Taraneh & Griess, Verena C., 2018. "Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations," Applied Energy, Elsevier, vol. 213(C), pages 626-638.
    6. Shabani, Nazanin & Sowlati, Taraneh, 2013. "A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant," Applied Energy, Elsevier, vol. 104(C), pages 353-361.
    7. Tatiana M. Pinho & João Paulo Coelho & Germano Veiga & A. Paulo Moreira & José Boaventura-Cunha, 2017. "A Multilayer Model Predictive Control Methodology Applied to a Biomass Supply Chain Operational Level," Complexity, Hindawi, vol. 2017, pages 1-10, July.
    8. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    9. Zahraee, Seyed Mojib & Shiwakoti, Nirajan & Stasinopoulos, Peter, 2022. "Application of geographical information system and agent-based modeling to estimate particle-gaseous pollutantemissions and transportation cost of woody biomass supply chain," Applied Energy, Elsevier, vol. 309(C).
    10. Pantaleo, Antonio & Candelise, Chiara & Bauen, Ausilio & Shah, Nilay, 2014. "ESCO business models for biomass heating and CHP: Profitability of ESCO operations in Italy and key factors assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 237-253.
    11. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    12. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    13. Malladi, Krishna Teja & Quirion-Blais, Olivier & Sowlati, Taraneh, 2018. "Development of a decision support tool for optimizing the short-term logistics of forest-based biomass," Applied Energy, Elsevier, vol. 216(C), pages 662-677.
    14. Svanberg, Martin & Ellis, Joanne & Lundgren, Joakim & Landälv, Ingvar, 2018. "Renewable methanol as a fuel for the shipping industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1217-1228.
    15. van Dyken, Silke & Bakken, Bjorn H. & Skjelbred, Hans I., 2010. "Linear mixed-integer models for biomass supply chains with transport, storage and processing," Energy, Elsevier, vol. 35(3), pages 1338-1350.
    16. Lim, Chun Hsion & Lam, Hon Loong & Ng, Wendy Pei Qin, 2018. "A novel HAZOP approach for literature review on biomass supply chain optimisation model," Energy, Elsevier, vol. 146(C), pages 13-25.
    17. Jin Su Jeong & Álvaro Ramírez-Gómez, 2017. "A Multicriteria GIS-Based Assessment to Optimize Biomass Facility Sites with Parallel Environment—A Case Study in Spain," Energies, MDPI, vol. 10(12), pages 1-14, December.
    18. Ćosić, Boris & Stanić, Zoran & Duić, Neven, 2011. "Geographic distribution of economic potential of agricultural and forest biomass residual for energy use: Case study Croatia," Energy, Elsevier, vol. 36(4), pages 2017-2028.
    19. Mosayeb Dashtpeyma & Reza Ghodsi, 2021. "Forest Biomass and Bioenergy Supply Chain Resilience: A Systematic Literature Review on the Barriers and Enablers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    20. Shabani, Nazanin & Sowlati, Taraneh & Ouhimmou, Mustapha & Rönnqvist, Mikael, 2014. "Tactical supply chain planning for a forest biomass power plant under supply uncertainty," Energy, Elsevier, vol. 78(C), pages 346-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.