IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v111y2013icp1239-1249.html
   My bibliography  Save this article

A simulation model for the design and analysis of wood pellet supply chains

Author

Listed:
  • Mobini, Mahdi
  • Sowlati, Taraneh
  • Sokhansanj, Shahab

Abstract

During the past decade, the global trade of wood pellets has been growing. Rapid increases in the production and consumption of wood pellets, and predictions on its increased demand in the near future have formed a competitive global market. Several studies have focused on the economic, environmental, and technological aspects of wood pellet production and consumption. In this paper, a simulation model is developed to enhance and facilitate the studies concerning the design and analysis of wood pellet supply chains. The scope of the model covers the entire supply chain from sources of raw materials to the end customers, providing a framework for assessment of the supply chains. The model includes uncertainties, interdependencies between stages of the supply chain, and resource constraints, which are usually simplified or ignored in previous studies. The outputs of the model include the amount of energy consumed in each process and its related CO2 emissions, and the cost components of delivered wood pellets to the customers. The model was applied to an existing supply chain located in BC, Canada. The estimated cost of wood pellets was 69.27$t−1 at the pellet mill’s gate and 101.33$t−1 at customers’ locations. Distribution of wood pellets to the customers contributed about 30.65% to total costs. Raw material procurement and transportation accounted for 29.16% of the total delivered cost, while pellet production contributes 40.19% to the total delivered cost. The energy consumption and CO2 emission along the supply chain were estimated at 568.93kWht−1 and 136.91kgt−1, respectively. The results of scenario-based analysis showed that by changing the drying fuel from sawdust to bark, about 1.5% cost reduction was achievable. Blending 10% bark in the whitewood feedstock reduced the estimated cost to 96.51$t−1 (4.75% reduction).

Suggested Citation

  • Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2013. "A simulation model for the design and analysis of wood pellet supply chains," Applied Energy, Elsevier, vol. 111(C), pages 1239-1249.
  • Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:1239-1249
    DOI: 10.1016/j.apenergy.2013.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913005333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.06.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duncan, Andrew & Pollard, Andrew & Fellouah, Hachimi, 2013. "Torrefied, spherical biomass pellets through the use of experimental design," Applied Energy, Elsevier, vol. 101(C), pages 237-243.
    2. Kohl, Thomas & Laukkanen, Timo & Järvinen, Mika & Fogelholm, Carl-Johan, 2013. "Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant," Applied Energy, Elsevier, vol. 107(C), pages 124-134.
    3. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    4. Di Giacomo, G. & Taglieri, L., 2009. "Renewable energy benefits with conversion of woody residues to pellets," Energy, Elsevier, vol. 34(5), pages 724-731.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    2. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    3. Zimmer, Tobias & Rudi, Andreas & Müller, Ann-Kathrin & Fröhling, Magnus & Schultmann, Frank, 2017. "Modeling the impact of competing utilization paths on biomass-to-liquid (BtL) supply chains," Applied Energy, Elsevier, vol. 208(C), pages 954-971.
    4. Chouchene, Ajmia & Jeguirim, Mejdi & Favre-Reguillon, Alain & Trouvé, Gwenaelle & Le Buzit, Gérard & Khiari, Besma & Zagrouba, Fethi, 2012. "Energetic valorisation of olive mill wastewater impregnated on low cost absorbent: Sawdust versus olive solid waste," Energy, Elsevier, vol. 39(1), pages 74-81.
    5. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
    6. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    7. Ham, Sang-Woo & Kim, Min-Hwi & Choi, Byung-Nam & Jeong, Jae-Weon, 2015. "Energy saving potential of various air-side economizers in a modular data center," Applied Energy, Elsevier, vol. 138(C), pages 258-275.
    8. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    9. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    10. Moritz Wegener & Antonio Isalgué & Anders Malmquist & Andrew Martin, 2019. "3E-Analysis of a Bio-Solar CCHP System for the Andaman Islands, India—A Case Study," Energies, MDPI, vol. 12(6), pages 1-19, March.
    11. Behrangrad, Mahdi & Sugihara, Hideharu & Funaki, Tsuyoshi, 2011. "Effect of optimal spinning reserve requirement on system pollution emission considering reserve supplying demand response in the electricity market," Applied Energy, Elsevier, vol. 88(7), pages 2548-2558, July.
    12. Gunarathne, Duleeka Sandamali & Mellin, Pelle & Yang, Weihong & Pettersson, Magnus & Ljunggren, Rolf, 2016. "Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace," Applied Energy, Elsevier, vol. 170(C), pages 353-361.
    13. Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
    14. Maaz Hassan & Naveed Usman & Majid Hussain & Adnan Yousaf & Muhammad Aamad Khattak & Sidra Yousaf & Rankeshwarnath Sanjay Mishr & Sana Ahmad & Fariha Rehman & Ahmad Rashedi, 2023. "Environmental and Socio-Economic Assessment of Biomass Pellets Biofuel in Hazara Division, Pakistan," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    15. Kohl, Thomas & Teles, Moises & Melin, Kristian & Laukkanen, Timo & Järvinen, Mika & Park, Song Won & Guidici, Reinaldo, 2015. "Exergoeconomic assessment of CHP-integrated biomass upgrading," Applied Energy, Elsevier, vol. 156(C), pages 290-305.
    16. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Kalt, Gerald & Kranzl, Lukas, 2011. "Assessing the economic efficiency of bioenergy technologies in climate mitigation and fossil fuel replacement in Austria using a techno-economic approach," Applied Energy, Elsevier, vol. 88(11), pages 3665-3684.
    18. Padi, Richard Kingsley & Chimphango, Annie, 2021. "Assessing the potential of integrating cassava residues-based bioenergy into national energy mix using long-range Energy Alternatives Planning systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Saari, Jussi & Sermyagina, Ekaterina & Kaikko, Juha & Vakkilainen, Esa & Sergeev, Vitaly, 2016. "Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis," Energy, Elsevier, vol. 113(C), pages 574-585.
    20. Kohl, T. & Laukkanen, T. & Tuomaala, M. & Niskanen, T. & Siitonen, S. & Järvinen, M.P. & Ahtila, P., 2014. "Comparison of energy efficiency assessment methods: Case Bio-SNG process," Energy, Elsevier, vol. 74(C), pages 88-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:1239-1249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.