IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i9p5899-5921d40064.html
   My bibliography  Save this article

The Forest Energy Chain in Tuscany: Economic Feasibility and Environmental Effects of Two Types of Biomass District Heating Plant

Author

Listed:
  • Claudio Fagarazzi

    (Department of Agricultural, Food and Forest Systems Management—GESAAF, University of Florence, Firenze 50144, Italy)

  • Alessandro Tirinnanzi

    (Department of Agricultural, Food and Forest Systems Management—GESAAF, University of Florence, Firenze 50144, Italy)

  • Mario Cozzi

    (School of Agricultural Sciences, Forestry, Food and Environment—SAFE, University of Basilicata, Potenza 85100, Italy)

  • Francesco Di Napoli

    (School of Agricultural Sciences, Forestry, Food and Environment—SAFE, University of Basilicata, Potenza 85100, Italy)

  • Severino Romano

    (School of Agricultural Sciences, Forestry, Food and Environment—SAFE, University of Basilicata, Potenza 85100, Italy)

Abstract

The purpose of this study was to examine two biomass district heating plants operating in Tuscany, with a specific focus on the ex-post evaluation of their economic and financial feasibility and of their environmental benefits. The former biomass district heating plant supplies only public users ( Comunità Montana della Lunigiana , CML: administrative body that coordinates the municipalities located in mountain areas), the latter supplies both public and private users (Municipality of San Romano in Garfagnana ). Ex-post investment analysis was performed to check both the consistency of results with the forecasts made in the stage of the project design and on the factors, which may have reduced or jeopardized the estimated economic performance of the investment (ex-ante assessment). The results of the study point out appreciable results only in the case of biomass district heating plants involving private users and fuelled by biomasses sourced from third parties. In this case, the factors that most influence ex-post results include the conditions of the woody biomass local market (market prices), the policies of energy selling prices to private users and the temporal dynamics of private users’ connection. To ensure the consistency of ex-post economic outcome with the expected results it is thus important to: (i) have good knowledge of the woody local market; (ii) define energy selling prices that should be cheap for private users but consistent with energy production costs and (iii) constrain private users beforehand to prevent errors in the plant design and in the preliminary estimate of return on investment. Moreover, the results obtained during the monitoring activities could help in providing information on the effectiveness of the supporting measures adopted and also to orient future choices of policy makers and particularly designers, to identify the most efficient configuration of district heating organization for improving energy and environmental performances of communities, and to develop a chain model for the optimization of energy use in the municipality.

Suggested Citation

  • Claudio Fagarazzi & Alessandro Tirinnanzi & Mario Cozzi & Francesco Di Napoli & Severino Romano, 2014. "The Forest Energy Chain in Tuscany: Economic Feasibility and Environmental Effects of Two Types of Biomass District Heating Plant," Energies, MDPI, vol. 7(9), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:9:p:5899-5921:d:40064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/9/5899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/9/5899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madlener, Reinhard, 2007. "Innovation diffusion, public policy, and local initiative: The case of wood-fuelled district heating systems in Austria," Energy Policy, Elsevier, vol. 35(3), pages 1992-2008, March.
    2. Severino Romano & Mario Cozzi & Francesco Di Napoli & Mauro Viccaro, 2013. "Building Agro-Energy Supply Chains in the Basilicata Region: Technical and Economic Evaluation of Interchangeability between Fossil and Renewable Energy Sources," Energies, MDPI, vol. 6(10), pages 1-24, October.
    3. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    4. Bernetti, Iacopo & Fagarazzi, Claudio & Fratini, Roberto, 2004. "A methodology to anaylse the potential development of biomass-energy sector: an application in Tuscany," Forest Policy and Economics, Elsevier, vol. 6(3-4), pages 415-432, June.
    5. Pong, Chris & Mitchell, Falconer, 2006. "Full costing versus variable costing: Does the choice still matter? An empirical exploration of UK manufacturing companies 1988–2002," The British Accounting Review, Elsevier, vol. 38(2), pages 131-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikodinoska, Natasha & Buonocore, Elvira & Paletto, Alessandro & Franzese, Pier Paolo, 2017. "Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework," Applied Energy, Elsevier, vol. 186(P2), pages 197-210.
    2. Giuseppe Di Vita & Manuela Pilato & Biagio Pecorino & Filippo Brun & Mario D’Amico, 2017. "A Review of the Role of Vegetal Ecosystems in CO 2 Capture," Sustainability, MDPI, vol. 9(10), pages 1-10, October.
    3. Flavio Andreoli Bonazzi & Sirio R.S. Cividino & Ilaria Zambon & Enrico Maria Mosconi & Stefano Poponi, 2018. "Building Energy Opportunity with a Supply Chain Based on the Local Fuel-Producing Capacity," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    4. Víctor M. Soltero & Ricardo Chacartegui & Carlos Ortiz & Gonzalo Quirosa, 2018. "Techno-Economic Analysis of Rural 4th Generation Biomass District Heating," Energies, MDPI, vol. 11(12), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cozzi, Mario & Viccaro, Mauro & Di Napoli, Francesco & Fagarazzi, Claudio & Tirinnanzi, Alessandro & Romano, Severino, 2015. "A spatial analysis model to assess the feasibility of short rotation forestry fertigated with urban wastewater: Basilicata region case study," Agricultural Water Management, Elsevier, vol. 159(C), pages 185-196.
    2. Capellán-Pérez, Iñigo & Campos-Celador, Álvaro & Terés-Zubiaga, Jon, 2018. "Renewable Energy Cooperatives as an instrument towards the energy transition in Spain," Energy Policy, Elsevier, vol. 123(C), pages 215-229.
    3. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    4. Cowan, Kelly R. & Daim, Tugrul U., 2011. "Review of technology acquisition and adoption research in the energy sector," Technology in Society, Elsevier, vol. 33(3), pages 183-199.
    5. Huang, Y. & McIlveen-Wright, D.R. & Rezvani, S. & Huang, M.J. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2013. "Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings," Applied Energy, Elsevier, vol. 112(C), pages 518-525.
    6. Cansino, José M. & Pablo-Romero, María del P. & Román, Rocío & Yñiguez, Rocío, 2011. "Promoting renewable energy sources for heating and cooling in EU-27 countries," Energy Policy, Elsevier, vol. 39(6), pages 3803-3812, June.
    7. Vladimír Hönig & Petr Prochazka & Michal Obergruber & Luboš Smutka & Viera Kučerová, 2019. "Economic and Technological Analysis of Commercial LNG Production in the EU," Energies, MDPI, vol. 12(8), pages 1-17, April.
    8. Pong, Christopher K.M. & Mitchell, Falconer, 2012. "Inventory investment & control: How have UK companies been doing?," The British Accounting Review, Elsevier, vol. 44(3), pages 173-188.
    9. Weidong Huang, 2015. "An Integrated Biomass Production and Conversion Process for Sustainable Bioenergy," Sustainability, MDPI, vol. 7(1), pages 1-15, January.
    10. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    11. Shizhong Song & Pei Liu & Jing Xu & Linwei Ma & Chinhao Chong & Min He & Xianzheng Huang & Zheng Li & Weidou Ni, 2016. "An Economic and Policy Analysis of a District Heating System Using Corn Straw Densified Fuel: A Case Study in Nong’an County in Jilin Province, China," Energies, MDPI, vol. 10(1), pages 1-22, December.
    12. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    13. Chinnici, Gaetano & D’Amico, Mario & Rizzo, Marcella & Pecorino, Biagio, 2015. "Analysis of biomass availability for energy use in Sicily," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1025-1030.
    14. Marco Manzone & Fabrizio Gioelli & Paolo Balsari, 2017. "Kiwi Clear‐Cut: First Evaluation of Recovered Biomass for Energy Production," Energies, MDPI, vol. 10(11), pages 1-12, November.
    15. da Silva Stefano, Gustavo & Antunes, Tiago dos Santos & Lacerda, Daniel Pacheco & Wolf Motta Morandi, Maria Isabel & Piran, Fabio Sartori, 2022. "The impacts of inventory in transfer pricing and net income: Differences between traditional accounting and throughput accounting," The British Accounting Review, Elsevier, vol. 54(2).
    16. Walker, Gordon, 2008. "What are the barriers and incentives for community-owned means of energy production and use?," Energy Policy, Elsevier, vol. 36(12), pages 4401-4405, December.
    17. Andrea Acampora & Vincenzo Civitarese & Giulio Sperandio & Negar Rezaei, 2021. "Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning," Energies, MDPI, vol. 14(14), pages 1-15, July.
    18. Madlener, Reinhard & Koller, Martin, 2007. "Economic and CO2 mitigation impacts of promoting biomass heating systems: An input-output study for Vorarlberg, Austria," Energy Policy, Elsevier, vol. 35(12), pages 6021-6035, December.
    19. Sy, Charlle L. & Aviso, Kathleen B. & Ubando, Aristotle T. & Tan, Raymond R., 2016. "Target-oriented robust optimization of polygeneration systems under uncertainty," Energy, Elsevier, vol. 116(P2), pages 1334-1347.
    20. Fabio Bartolini & Luciana G. Angelini & Gianluca Brunori & Oriana Gava, 2015. "Impacts of the CAP 2014–2020 on the Agroenergy Sector in Tuscany, Italy," Energies, MDPI, vol. 8(2), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:9:p:5899-5921:d:40064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.