IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224029712.html
   My bibliography  Save this article

Modeling and control system optimization for electrified vehicles: A data-driven approach

Author

Listed:
  • Zhang, Hao
  • Lei, Nuo
  • Chen, Boli
  • Li, Bingbing
  • Li, Rulong
  • Wang, Zhi

Abstract

Learning-based intelligent energy management systems for plug-in hybrid electric vehicles (PHEVs) are crucial for achieving efficient energy utilization. However, their application faces system reliability challenges in the real world, which prevents widespread acceptance by original equipment manufacturers (OEMs). This paper begins by establishing a PHEV model based on physical and data-driven models, focusing on the high-fidelity training environment. It then proposes a real-vehicle application-oriented control framework, combining horizon-extended reinforcement learning (RL)-based energy management with the equivalent consumption minimization strategy (ECMS) to enhance practical applicability, and improves the flawed method of equivalent factor evaluation based on instantaneous driving cycle and powertrain states found in existing research. Finally, comprehensive simulation and hardware-in-the-loop validation are carried out which demonstrates the advantages of the proposed control framework in fuel economy over adaptive-ECMS and rule-based strategies. Compared to conventional RL architectures that directly control powertrain components, the proposed control method not only achieves similar optimality but also significantly enhances the disturbance resistance of the energy management system, providing an effective control framework for RL-based energy management strategies aimed at real-vehicle applications by OEMs.

Suggested Citation

  • Zhang, Hao & Lei, Nuo & Chen, Boli & Li, Bingbing & Li, Rulong & Wang, Zhi, 2024. "Modeling and control system optimization for electrified vehicles: A data-driven approach," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029712
    DOI: 10.1016/j.energy.2024.133196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224029712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Bingbing & Zhuang, Weichao & Zhang, Hao & Zhao, Ruixuan & Liu, Haoji & Qu, Linghu & Zhang, Jianrun & Chen, Boli, 2024. "A comparative study of energy-oriented driving strategy for connected electric vehicles on freeways with varying slopes," Energy, Elsevier, vol. 289(C).
    2. Zhou, Quan & Li, Yanfei & Zhao, Dezong & Li, Ji & Williams, Huw & Xu, Hongming & Yan, Fuwu, 2022. "Transferable representation modelling for real-time energy management of the plug-in hybrid vehicle based on k-fold fuzzy learning and Gaussian process regression," Applied Energy, Elsevier, vol. 305(C).
    3. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Liu, Yonggang & Wu, Yitao & Wang, Xiangyu & Li, Liang & Zhang, Yuanjian & Chen, Zheng, 2023. "Energy management for hybrid electric vehicles based on imitation reinforcement learning," Energy, Elsevier, vol. 263(PC).
    5. Gao, Kai & Luo, Pan & Xie, Jin & Chen, Bin & Wu, Yue & Du, Ronghua, 2023. "Energy management of plug-in hybrid electric vehicles based on speed prediction fused driving intention and LIDAR," Energy, Elsevier, vol. 284(C).
    6. Hua, Min & Zhang, Cetengfei & Zhang, Fanggang & Li, Zhi & Yu, Xiaoli & Xu, Hongming & Zhou, Quan, 2023. "Energy management of multi-mode plug-in hybrid electric vehicle using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 348(C).
    7. Lu, Ziwang & Tian, He & sun, Yiwen & Li, Runfeng & Tian, Guangyu, 2023. "Neural network energy management strategy with optimal input features for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    8. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    9. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    10. Jin, Yue & Yang, Lin & Du, Mao & Qiang, Jiaxi & Li, Jingzhong & Chen, Yuxuan & Tu, Jiayu, 2023. "Two-scale based energy management for connected plug-in hybrid electric vehicles with global optimal energy consumption and state-of-charge trajectory prediction," Energy, Elsevier, vol. 267(C).
    11. Shuai, Bin & Zhou, Quan & Li, Ji & He, Yinglong & Li, Ziyang & Williams, Huw & Xu, Hongming & Shuai, Shijin, 2020. "Heuristic action execution for energy efficient charge-sustaining control of connected hybrid vehicles with model-free double Q-learning," Applied Energy, Elsevier, vol. 267(C).
    12. Sun, Xilei & Fu, Jianqin & Yang, Huiyong & Xie, Mingke & Liu, Jingping, 2023. "An energy management strategy for plug-in hybrid electric vehicles based on deep learning and improved model predictive control," Energy, Elsevier, vol. 269(C).
    13. Zhou, Quan & Du, Changqing & Wu, Dongmei & Huang, Cheng & Yan, Fuwu, 2023. "A tolerant sequential correction predictive energy management strategy of hybrid electric vehicles with adaptive mesh discretization," Energy, Elsevier, vol. 274(C).
    14. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Sun, Wenjing & Zou, Yuan & Zhang, Xudong & Guo, Ningyuan & Zhang, Bin & Du, Guodong, 2022. "High robustness energy management strategy of hybrid electric vehicle based on improved soft actor-critic deep reinforcement learning," Energy, Elsevier, vol. 258(C).
    16. Ganesh, Akhil Hannegudda & Xu, Bin, 2022. "A review of reinforcement learning based energy management systems for electrified powertrains: Progress, challenge, and potential solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    18. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Shota Inuzuka & Bo Zhang & Tielong Shen, 2021. "Real-Time HEV Energy Management Strategy Considering Road Congestion Based on Deep Reinforcement Learning," Energies, MDPI, vol. 14(17), pages 1-20, August.
    20. Yang, Liuquan & Wang, Weida & Yang, Chao & Wang, Muyao & Chen, Yifan & Jiang, Zhuangzhuang & Zhang, Yuhang & Liu, Guosheng, 2024. "Time-delay-aware power coordinated control approach for series hybrid electric vehicles," Energy, Elsevier, vol. 294(C).
    21. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    22. Chen, Xu & Li, Mince & Chen, Zonghai, 2023. "Meta rule-based energy management strategy for battery/supercapacitor hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    23. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    24. Zhang, Zhen & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Yang, Jian & Jia, Qingxiao, 2023. "Double deep Q-network guided energy management strategy of a novel electric-hydraulic hybrid electric vehicle," Energy, Elsevier, vol. 269(C).
    25. Zhang, Yuanjian & Gao, Bingzhao & Jiang, Jingjing & Liu, Chengyuan & Zhao, Dezong & Zhou, Quan & Chen, Zheng & Lei, Zhenzhen, 2023. "Cooperative power management for range extended electric vehicle based on internet of vehicles," Energy, Elsevier, vol. 273(C).
    26. Xiao, Boyi & Yang, Weiwei & Wu, Jiamin & Walker, Paul D. & Zhang, Nong, 2022. "Energy management strategy via maximum entropy reinforcement learning for an extended range logistics vehicle," Energy, Elsevier, vol. 253(C).
    27. Chen, Zhihang & Liu, Yonggang & Zhang, Yuanjian & Lei, Zhenzhen & Chen, Zheng & Li, Guang, 2022. "A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles," Energy, Elsevier, vol. 243(C).
    28. Zhang, Hao & Liu, Shang & Lei, Nuo & Fan, Qinhao & Wang, Zhi, 2022. "Leveraging the benefits of ethanol-fueled advanced combustion and supervisory control optimization in hybrid biofuel-electric vehicles," Applied Energy, Elsevier, vol. 326(C).
    29. Zhang, Hao & Lei, Nuo & Liu, Shang & Fan, Qinhao & Wang, Zhi, 2023. "Data-driven predictive energy consumption minimization strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    30. Ruan, Jiageng & Wu, Changcheng & Liang, Zhaowen & Liu, Kai & Li, Bin & Li, Weihan & Li, Tongyang, 2023. "The application of machine learning-based energy management strategy in a multi-mode plug-in hybrid electric vehicle, part II: Deep deterministic policy gradient algorithm design for electric mode," Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hao & Lei, Nuo & Liu, Shang & Fan, Qinhao & Wang, Zhi, 2023. "Data-driven predictive energy consumption minimization strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    2. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    3. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    4. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    6. Hou, Zhuoran & Guo, Jianhua & Chu, Liang & Hu, Jincheng & Chen, Zheng & Zhang, Yuanjian, 2023. "Exploration the route of information integration for vehicle design: A knowledge-enhanced energy management strategy," Energy, Elsevier, vol. 282(C).
    7. Hu, Dong & Xie, Hui & Song, Kang & Zhang, Yuanyuan & Yan, Long, 2023. "An apprenticeship-reinforcement learning scheme based on expert demonstrations for energy management strategy of hybrid electric vehicles," Applied Energy, Elsevier, vol. 342(C).
    8. Zhang, Hao & Liu, Shang & Lei, Nuo & Fan, Qinhao & Wang, Zhi, 2022. "Leveraging the benefits of ethanol-fueled advanced combustion and supervisory control optimization in hybrid biofuel-electric vehicles," Applied Energy, Elsevier, vol. 326(C).
    9. Zhou, Jie & Zhang, Tiezhu & Zhang, Hongxin & Zhang, Zhen & Hong, Jichao & Yang, Jian, 2024. "Energy management strategy for electro-hydraulic hybrid electric vehicles considering optimal mode switching: A soft actor-critic approach trained on a multi-modal driving cycle," Energy, Elsevier, vol. 305(C).
    10. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Hu, Dong & Huang, Chao & Yin, Guodong & Li, Yangmin & Huang, Yue & Huang, Hailong & Wu, Jingda & Li, Wenfei & Xie, Hui, 2024. "A transfer-based reinforcement learning collaborative energy management strategy for extended-range electric buses with cabin temperature comfort consideration," Energy, Elsevier, vol. 290(C).
    12. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    13. Yaqian Wang & Xiaohong Jiao, 2022. "Dual Heuristic Dynamic Programming Based Energy Management Control for Hybrid Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-19, April.
    14. Li, Lin & Zhang, Tiezhu & Lu, Liqun & Zhang, Hongxin & Yang, Jian & Zhang, Zhen, 2023. "An energy active regulation management strategy based on driving mode recognition for electro-hydraulic hybrid vehicles," Energy, Elsevier, vol. 285(C).
    15. Tan, Yingqi & Xu, Jingyi & Ma, Junyi & Li, Zirui & Chen, Huiyan & Xi, Junqiang & Liu, Haiou, 2024. "A transferable perception-guided EMS for series hybrid electric unmanned tracked vehicles," Energy, Elsevier, vol. 306(C).
    16. Feng, Zhiyan & Zhang, Qingang & Zhang, Yiming & Fei, Liangyu & Jiang, Fei & Zhao, Shengdun, 2024. "Practicability analysis of online deep reinforcement learning towards energy management strategy of 4WD-BEVs driven by dual-motor in-wheel motors," Energy, Elsevier, vol. 290(C).
    17. Hua, Min & Zhang, Cetengfei & Zhang, Fanggang & Li, Zhi & Yu, Xiaoli & Xu, Hongming & Zhou, Quan, 2023. "Energy management of multi-mode plug-in hybrid electric vehicle using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 348(C).
    18. Wilberforce, Tabbi & Anser, Afaaq & Swamy, Jangam Aishwarya & Opoku, Richard, 2023. "An investigation into hybrid energy storage system control and power distribution for hybrid electric vehicles," Energy, Elsevier, vol. 279(C).
    19. Álvaro Gómez-Barroso & Iban Vicente Makazaga & Ekaitz Zulueta, 2024. "Optimizing Hybrid Electric Vehicle Performance: A Detailed Overview of Energy Management Strategies," Energies, MDPI, vol. 18(1), pages 1-32, December.
    20. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.