IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v243y2022ics0360544221029765.html
   My bibliography  Save this article

A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles

Author

Listed:
  • Chen, Zhihang
  • Liu, Yonggang
  • Zhang, Yuanjian
  • Lei, Zhenzhen
  • Chen, Zheng
  • Li, Guang

Abstract

For plug-in hybrid electric vehicles, the equivalent consumption minimum strategy is typically regarded as a battery state of charge reference tracking method. Thus, the corresponding control performance is strongly dependent on the quality of state of charge reference generation. This paper proposes an intelligent equivalent consumption minimum strategy based on dual neural networks and a novel equivalent factor correction, which can adaptively regulate the equivalent factor to achieve the near-optimal fuel economy without the support of the state of charge reference. The Bayesian regularization neural network is constructed to predict the near-optimal equivalent factor online, while the backpropagation neural network is designed to forecast the engine on/off with the aim of improving the quality of equivalent factor prediction. The corresponding neural network training takes advantage of the global optimality of dynamic programming. Besides, the novel equivalent factor correction can guarantee that the electrical energy is gradually consumed along the trip and the terminal battery state of charge satisfies the preset constraints. A series of virtual simulations under a total of nine driving cycles demonstrates that the proposed method can deliver a competitive fuel economy comparing to the optimal solution derived from the dynamic programming, as well as regulating the battery state of charge to reach the desired terminal value at the end of the trip.

Suggested Citation

  • Chen, Zhihang & Liu, Yonggang & Zhang, Yuanjian & Lei, Zhenzhen & Chen, Zheng & Li, Guang, 2022. "A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles," Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221029765
    DOI: 10.1016/j.energy.2021.122727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221029765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jiamin & Zhang, Caizhi & Fan, Ruijia & Bao, Huanhuan & Wang, Yi & Huang, Shulong & Chin, Cheng Siong & Li, Congxin, 2020. "Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle," Energy, Elsevier, vol. 199(C).
    2. Lu Han & Xiaohong Jiao & Zhao Zhang, 2020. "Recurrent Neural Network-Based Adaptive Energy Management Control Strategy of Plug-In Hybrid Electric Vehicles Considering Battery Aging," Energies, MDPI, vol. 13(1), pages 1-22, January.
    3. Shaobo Xie & Huiling Li & Zongke Xin & Tong Liu & Lang Wei, 2017. "A Pontryagin Minimum Principle-Based Adaptive Equivalent Consumption Minimum Strategy for a Plug-in Hybrid Electric Bus on a Fixed Route," Energies, MDPI, vol. 10(9), pages 1-22, September.
    4. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Hu, Xiaosong & Zou, Yuan & Yang, Yalian, 2016. "Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization," Energy, Elsevier, vol. 111(C), pages 971-980.
    6. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Lang, Kun, 2018. "An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 163(C), pages 837-848.
    7. Tian, Xiang & Cai, Yingfeng & Sun, Xiaodong & Zhu, Zhen & Xu, Yiqiang, 2019. "An adaptive ECMS with driving style recognition for energy optimization of parallel hybrid electric buses," Energy, Elsevier, vol. 189(C).
    8. Zhang, Yuanjian & Chu, Liang & Fu, Zicheng & Xu, Nan & Guo, Chong & Zhao, Di & Ou, Yang & Xu, Lei, 2020. "Energy management strategy for plug-in hybrid electric vehicle integrated with vehicle-environment cooperation control," Energy, Elsevier, vol. 197(C).
    9. Naga Kavitha Kommuri & Andrew McGordon & Antony Allen & Dinh Quang Truong, 2020. "Evaluation of a Modified Equivalent Fuel-Consumption Minimization Strategy Considering Engine Start Frequency and Battery Parameters for a Plugin Hybrid Two-Wheeler," Energies, MDPI, vol. 13(12), pages 1-26, June.
    10. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaodong Liu & Hongqiang Guo & Xingqun Cheng & Juan Du & Jian Ma, 2022. "A Robust Design of the Model-Free-Adaptive-Control-Based Energy Management for Plug-In Hybrid Electric Vehicle," Energies, MDPI, vol. 15(20), pages 1-24, October.
    2. Jia, Chunchun & Li, Kunang & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao, 2023. "Health-aware energy management strategy for fuel cell hybrid bus considering air-conditioning control based on TD3 algorithm," Energy, Elsevier, vol. 283(C).
    3. Zhang, Hao & Lei, Nuo & Liu, Shang & Fan, Qinhao & Wang, Zhi, 2023. "Data-driven predictive energy consumption minimization strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    4. Hou, Zhuoran & Guo, Jianhua & Chu, Liang & Hu, Jincheng & Chen, Zheng & Zhang, Yuanjian, 2023. "Exploration the route of information integration for vehicle design: A knowledge-enhanced energy management strategy," Energy, Elsevier, vol. 282(C).
    5. Chen, Yifan & Yang, Liuquan & Yang, Chao & Wang, Weida & Zha, Mingjun & Gao, Pu & Liu, Hui, 2024. "Real-time analytical solution to energy management for hybrid electric vehicles using intelligent driving cycle recognition," Energy, Elsevier, vol. 307(C).
    6. Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    7. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    8. Gao, Sichen & Zong, Yuhua & Ju, Fei & Wang, Qun & Huo, Weiwei & Wang, Liangmo & Wang, Tao, 2024. "Scenario-oriented adaptive ECMS using speed prediction for fuel cell vehicles in real-world driving," Energy, Elsevier, vol. 304(C).
    9. Wilberforce, Tabbi & Anser, Afaaq & Swamy, Jangam Aishwarya & Opoku, Richard, 2023. "An investigation into hybrid energy storage system control and power distribution for hybrid electric vehicles," Energy, Elsevier, vol. 279(C).
    10. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    11. Wei, Xiaodong & Wang, Jiaqi & Sun, Chao & Liu, Bo & Huo, Weiwei & Sun, Fengchun, 2023. "Guided control for plug-in fuel cell hybrid electric vehicles via vehicle to traffic communication," Energy, Elsevier, vol. 267(C).
    12. Abd-Elhaleem, Sameh & Shoeib, Walaa & Sobaih, Abdel Azim, 2023. "A new power management strategy for plug-in hybrid electric vehicles based on an intelligent controller integrated with CIGPSO algorithm," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Shaobo Xie & Xiaosong Hu & Kun Lang & Shanwei Qi & Tong Liu, 2018. "Powering Mode-Integrated Energy Management Strategy for a Plug-In Hybrid Electric Truck with an Automatic Mechanical Transmission Based on Pontryagin’s Minimum Principle," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    4. Matthieu Matignon & Toufik Azib & Mehdi Mcharek & Ahmed Chaibet & Adriano Ceschia, 2023. "Real-Time Integrated Energy Management Strategy Applied to Fuel Cell Hybrid Systems," Energies, MDPI, vol. 16(6), pages 1-21, March.
    5. Yaqian Wang & Xiaohong Jiao, 2022. "Dual Heuristic Dynamic Programming Based Energy Management Control for Hybrid Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-19, April.
    6. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Dongwei Yao & Xinwei Lu & Xiangyun Chao & Yongguang Zhang & Junhao Shen & Fanlong Zeng & Ziyan Zhang & Feng Wu, 2023. "Adaptive Equivalent Fuel Consumption Minimization Based Energy Management Strategy for Extended-Range Electric Vehicle," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    8. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    9. Xie, Shaobo & Lang, Kun & Qi, Shanwei, 2020. "Aerodynamic-aware coordinated control of following speed and power distribution for hybrid electric trucks," Energy, Elsevier, vol. 209(C).
    10. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    11. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Lang, Kun, 2018. "An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 163(C), pages 837-848.
    12. Peng, Fei & Zhao, Yuanzhe & Chen, Ting & Zhang, Xuexia & Chen, Weirong & Zhou, Donghua & Li, Qi, 2018. "Development of robust suboptimal real-time power sharing strategy for modern fuel cell based hybrid tramways considering operational uncertainties and performance degradation," Applied Energy, Elsevier, vol. 226(C), pages 503-521.
    13. Li, Yapeng & Tang, Xiaolin & Lin, Xianke & Grzesiak, Lech & Hu, Xiaosong, 2022. "The role and application of convex modeling and optimization in electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
    15. Xie, Shaobo & Hu, Xiaosong & Xin, Zongke & Brighton, James, 2019. "Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 236(C), pages 893-905.
    16. Li, Yapeng & Wang, Feng & Tang, Xiaolin & Hu, Xiaosong & Lin, Xianke, 2022. "Convex optimization-based predictive and bi-level energy management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 257(C).
    17. Li, Cheng & Xu, Xiangyang & Zhu, Helong & Gan, Jiongpeng & Chen, Zhige & Tang, Xiaolin, 2024. "Research on car-following control and energy management strategy of hybrid electric vehicles in connected scene," Energy, Elsevier, vol. 293(C).
    18. Guo, Hongqiang & Lu, Silong & Hui, Hongzhong & Bao, Chunjiang & Shangguan, Jinyong, 2019. "Receding horizon control-based energy management for plug-in hybrid electric buses using a predictive model of terminal SOC constraint in consideration of stochastic vehicle mass," Energy, Elsevier, vol. 176(C), pages 292-308.
    19. Zhang, Yahui & Wei, Zeyi & Wang, Zhong & Tian, Yang & Wang, Jizhe & Tian, Zhikun & Xu, Fuguo & Jiao, Xiaohong & Li, Liang & Wen, Guilin, 2024. "Hierarchical eco-driving control strategy for connected automated fuel cell hybrid vehicles and scenario-/hardware-in-the loop validation," Energy, Elsevier, vol. 292(C).
    20. Yang, Chao & Du, Xuelong & Wang, Weida & Yuan, Lijuan & Yang, Liuquan, 2024. "Variable optimization domain-based cooperative energy management strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221029765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.