IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921011910.html
   My bibliography  Save this article

Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine

Author

Listed:
  • Zhang, Hao
  • Fan, Qinhao
  • Liu, Shang
  • Li, Shengbo Eben
  • Huang, Jin
  • Wang, Zhi

Abstract

The dedicated hybrid engines (DHEs) with dual-mode combustion technology can drastically reduce the fuel consumption and emissions while guarantee the power density. This paper aims to investigate the optimal control of such DHE-based plug-in hybrid electric vehicles (PHEVs) under real driving conditions, with minimum fuel penalties caused by transient engine dynamics. For this purpose, the benefits brought by artificial intelligent control and traffic preview in terms of energy efficiency can be combined with the advantages of advanced combustion engine. This paper presents a hierarchical energy management strategy (HEMS) to realize the synergy of global and instantaneous optimization. At the cloud level of HEMS, dynamic programming is applied to obtain optimal combustion mode and state of charge reference trajectories in a receding horizon. At the powertrain level, deep reinforcement learning with a ranking-prioritized experience replay algorithm is used to output optimal engine power and combustion mode for the energy management. To evaluate the proposed strategy, a dual-mode engine with homogeneous charge compression ignition and spark ignition systems is tested and mapped, with which the PHEV is modeled in GT-Suite and Matlab/Simulink. Comprehensive experiments are carried out to verify the optimality, generalization and robustness based on a standard driving cycle and a real-world driving cycle in China with GPS data recorded. The results show that the HEMS avoids frequent switching of combustion modes and outperforms the conventional methods by more than 4% and 10% in terms of fuel economy and NOx emissions, respectively, with random initial and terminal conditions.

Suggested Citation

  • Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011910
    DOI: 10.1016/j.apenergy.2021.117869
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921011910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García, Antonio & Carlucci, Paolo & Monsalve-Serrano, Javier & Valletta, Andrea & Martínez-Boggio, Santiago, 2021. "Energy management optimization for a power-split hybrid in a dual-mode RCCI-CDC engine," Applied Energy, Elsevier, vol. 302(C).
    2. García, Antonio & Carlucci, Paolo & Monsalve-Serrano, Javier & Valletta, Andrea & Martínez-Boggio, Santiago, 2020. "Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion," Applied Energy, Elsevier, vol. 272(C).
    3. Tian, He & Li, Shengbo Eben & Wang, Xu & Huang, Yong & Tian, Guangyu, 2018. "Data-driven hierarchical control for online energy management of plug-in hybrid electric city bus," Energy, Elsevier, vol. 142(C), pages 55-67.
    4. Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
    5. Gao, Zhiming & Curran, Scott J. & Parks, James E. & Smith, David E. & Wagner, Robert M. & Daw, C. Stuart & Edwards, K. Dean & Thomas, John F., 2015. "Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles," Applied Energy, Elsevier, vol. 157(C), pages 762-776.
    6. Jinquan, Guo & Hongwen, He & Jiankun, Peng & Nana, Zhou, 2019. "A novel MPC-based adaptive energy management strategy in plug-in hybrid electric vehicles," Energy, Elsevier, vol. 175(C), pages 378-392.
    7. Hou, Jun & Song, Ziyou, 2020. "A hierarchical energy management strategy for hybrid energy storage via vehicle-to-cloud connectivity," Applied Energy, Elsevier, vol. 257(C).
    8. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    9. Shuai, Bin & Zhou, Quan & Li, Ji & He, Yinglong & Li, Ziyang & Williams, Huw & Xu, Hongming & Shuai, Shijin, 2020. "Heuristic action execution for energy efficient charge-sustaining control of connected hybrid vehicles with model-free double Q-learning," Applied Energy, Elsevier, vol. 267(C).
    10. Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
    11. Zhou, Quan & Li, Ji & Shuai, Bin & Williams, Huw & He, Yinglong & Li, Ziyang & Xu, Hongming & Yan, Fuwu, 2019. "Multi-step reinforcement learning for model-free predictive energy management of an electrified off-highway vehicle," Applied Energy, Elsevier, vol. 255(C).
    12. Onori, Simona & Tribioli, Laura, 2015. "Adaptive Pontryagin’s Minimum Principle supervisory controller design for the plug-in hybrid GM Chevrolet Volt," Applied Energy, Elsevier, vol. 147(C), pages 224-234.
    13. Sun, Chao & Sun, Fengchun & He, Hongwen, 2017. "Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1644-1653.
    14. Paykani, Amin & Garcia, Antonio & Shahbakhti, Mahdi & Rahnama, Pourya & Reitz, Rolf D., 2021. "Reactivity controlled compression ignition engine: Pathways towards commercial viability," Applied Energy, Elsevier, vol. 282(PA).
    15. Zhang, Bo & Zhang, Jiangyan & Xu, Fuguo & Shen, Tielong, 2020. "Optimal control of power-split hybrid electric powertrains with minimization of energy consumption," Applied Energy, Elsevier, vol. 266(C).
    16. Abdul-Manan, Amir F.N. & Won, Hyun-Woo & Li, Yang & Sarathy, S. Mani & Xie, Xiaomin & Amer, Amer A., 2020. "Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids," Applied Energy, Elsevier, vol. 267(C).
    17. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2020. "Velocity and energy trajectory prediction of electrified powertrain for look ahead control," Applied Energy, Elsevier, vol. 279(C).
    18. Zhang, Hailong & Peng, Jiankun & Tan, Huachun & Dong, Hanxuan & Ding, Fan & Ran, Bin, 2020. "Tackling SOC long-term dynamic for energy management of hybrid electric buses via adaptive policy optimization," Applied Energy, Elsevier, vol. 269(C).
    19. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2020. "Adjusting energy consumption structure to achieve China's CO2 emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    20. Zhou, Wei & Chen, Yaoqi & Zhai, Haoran & Zhang, Weigang, 2021. "Predictive energy management for a plug-in hybrid electric vehicle using driving profile segmentation and energy-based analytical SoC planning," Energy, Elsevier, vol. 220(C).
    21. Andersson, Öivind & Börjesson, Pål, 2021. "The greenhouse gas emissions of an electrified vehicle combined with renewable fuels: Life cycle assessment and policy implications," Applied Energy, Elsevier, vol. 289(C).
    22. Han, Xuefeng & He, Hongwen & Wu, Jingda & Peng, Jiankun & Li, Yuecheng, 2019. "Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 254(C).
    23. Wang, An & Tu, Ran & Gai, Yijun & Pereira, Lucas G. & Vaughan, J. & Posen, I. Daniel & Miller, Eric J. & Hatzopoulou, Marianne, 2020. "Capturing uncertainty in emission estimates related to vehicle electrification and implications for metropolitan greenhouse gas emission inventories," Applied Energy, Elsevier, vol. 265(C).
    24. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    25. Li, Yuecheng & He, Hongwen & Khajepour, Amir & Wang, Hong & Peng, Jiankun, 2019. "Energy management for a power-split hybrid electric bus via deep reinforcement learning with terrain information," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xinglong & Zhao, Fuquan & Hao, Han & Liu, Zongwei, 2023. "Comparative analysis for different vehicle powertrains in terms of energy-saving potential and cost-effectiveness in China," Energy, Elsevier, vol. 276(C).
    2. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    3. Zhang, Hao & Lei, Nuo & Liu, Shang & Fan, Qinhao & Wang, Zhi, 2023. "Data-driven predictive energy consumption minimization strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    4. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    5. Zhang, Hao & Liu, Shang & Lei, Nuo & Fan, Qinhao & Wang, Zhi, 2022. "Leveraging the benefits of ethanol-fueled advanced combustion and supervisory control optimization in hybrid biofuel-electric vehicles," Applied Energy, Elsevier, vol. 326(C).
    6. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    7. Yu, Xiao & Lin, Cheng & Tian, Yu & Zhao, Mingjie & Liu, Huimin & Xie, Peng & Zhang, JunZhi, 2023. "Real-time and hierarchical energy management-control framework for electric vehicles with dual-motor powertrain system," Energy, Elsevier, vol. 272(C).
    8. Rajput, Daizy & Herreros, Jose M. & Innocente, Mauro S. & Bryans, Jeremy & Schaub, Joschka & Dizqah, Arash M., 2022. "Impact of the number of planetary gears on the energy efficiency of electrified powertrains," Applied Energy, Elsevier, vol. 323(C).
    9. Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2022. "Development and experimental assessment of a Low Speed Sliding Rotary Vane Pump for heavy duty engine cooling systems," Applied Energy, Elsevier, vol. 327(C).
    10. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hao & Liu, Shang & Lei, Nuo & Fan, Qinhao & Wang, Zhi, 2022. "Leveraging the benefits of ethanol-fueled advanced combustion and supervisory control optimization in hybrid biofuel-electric vehicles," Applied Energy, Elsevier, vol. 326(C).
    2. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    3. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    4. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    5. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Yang, Dongpo & Liu, Tong & Song, Dafeng & Zhang, Xuanming & Zeng, Xiaohua, 2023. "A real time multi-objective optimization Guided-MPC strategy for power-split hybrid electric bus based on velocity prediction," Energy, Elsevier, vol. 276(C).
    7. Li, Guozhen & Zhang, Zhenyu & Shi, Wankai & Li, Wenyong, 2023. "Energy management strategy and simulation analysis of a hybrid train based on a comprehensive efficiency optimization," Applied Energy, Elsevier, vol. 349(C).
    8. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    9. Hu, Dong & Xie, Hui & Song, Kang & Zhang, Yuanyuan & Yan, Long, 2023. "An apprenticeship-reinforcement learning scheme based on expert demonstrations for energy management strategy of hybrid electric vehicles," Applied Energy, Elsevier, vol. 342(C).
    10. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
    12. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    13. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    14. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    15. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    16. Hou, Shengyan & Yin, Hai & Xu, Fuguo & Benjamín, Pla & Gao, Jinwu & Chen, Hong, 2023. "Multihorizon predictive energy optimization and lifetime management for connected fuel cell electric vehicles," Energy, Elsevier, vol. 266(C).
    17. Huang, Ruchen & He, Hongwen & Zhao, Xuyang & Wang, Yunlong & Li, Menglin, 2022. "Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm," Applied Energy, Elsevier, vol. 321(C).
    18. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    19. Hua, Min & Zhang, Cetengfei & Zhang, Fanggang & Li, Zhi & Yu, Xiaoli & Xu, Hongming & Zhou, Quan, 2023. "Energy management of multi-mode plug-in hybrid electric vehicle using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 348(C).
    20. Zhang, Hailong & Peng, Jiankun & Tan, Huachun & Dong, Hanxuan & Ding, Fan & Ran, Bin, 2020. "Tackling SOC long-term dynamic for energy management of hybrid electric buses via adaptive policy optimization," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.