IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224019467.html
   My bibliography  Save this article

Energy management strategy for electro-hydraulic hybrid electric vehicles considering optimal mode switching: A soft actor-critic approach trained on a multi-modal driving cycle

Author

Listed:
  • Zhou, Jie
  • Zhang, Tiezhu
  • Zhang, Hongxin
  • Zhang, Zhen
  • Hong, Jichao
  • Yang, Jian

Abstract

Hybrid electric vehicles (HEVs) feature multiple working modes. Thoughtful selection of these modes can optimally balance driving performance, power demands, and energy consumption, thereby enhancing the overall efficiency of the vehicle. This paper presents a soft actor-critic (SAC) approach trained on a multi-modal driving cycle (MDC) for selecting operational modes of electro-hydraulic hybrid electric vehicle (EHHEV). Firstly, characteristic parameters are extracted and clustered for five typical driving cycles through principal component analysis and K-means clustering, creating a multi-modal driving cycle. Secondly, based on the operational characteristics of EHHEV, state variables, action variables, reward functions, learning rates, and other parameters are set for the SAC algorithm, and the EMS framework is built based on the electro-hydraulic hybrid electric power system. Subsequently, the SAC algorithm is trained using the MDC to construct the SAC-MDC EMS. Results demonstrate that compared to EV, RB EMS, and SAC EMS, IREC achieves maximum improvements of 22.38 %, 5.55 % and 0.80 %, respectively. The dynamic performance and the motor load optimization capability are also enhanced. To further validate the practicality and reliability of the SAC-MDC EMS, this paper validates it using actual driving data, revealing that it still exhibits outstanding performance.

Suggested Citation

  • Zhou, Jie & Zhang, Tiezhu & Zhang, Hongxin & Zhang, Zhen & Hong, Jichao & Yang, Jian, 2024. "Energy management strategy for electro-hydraulic hybrid electric vehicles considering optimal mode switching: A soft actor-critic approach trained on a multi-modal driving cycle," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224019467
    DOI: 10.1016/j.energy.2024.132172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224019467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.