IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224026513.html
   My bibliography  Save this article

Deep learning-based electricity price forecasting: Findings on price predictability and European electricity markets

Author

Listed:
  • Aliyon, Kasra
  • Ritvanen, Jouni

Abstract

Deep learning algorithms have transformed day-ahead electricity price predictions in recent years. This phenomenon has implications for price predictability and perceived risks, which in turn could impact investments. This study aims to unravel the impact of deep learning-based price forecasting (DPF) on price predictability and its correlation with price volatility. This has been done by examining 19 bidding zones across 11 European countries from January 2018 to June 2023. This timeframe captures the unique market dynamics influenced by the COVID-19 pandemic and the Global Energy Crisis. This analysis has been enabled by the development of the Day-ahead European Electricity Price Forecasting Kit (Deepforkit), a forecasting tool developed in-house and open-sourced. Notably, Deepforkit offers a running speed at least 5 times faster than a previously suggested benchmark, enabling large-scale and multi-market analyses such as the one conducted in this study. It is quantitatively proven that if DPF is used, price volatility is just moderately correlated to unpredictability, and using it as a proxy for price unpredictability is not reliable. This is attributed to the capacity of DPFs to adjust their predictions in response to evolving market trends and patterns. This finding has an important implication on the investment risk perception and the cost of capital for new investments in the power sector. Moreover, the predictability behavior of prices is compared and contrasted in 3 markets, namely EPEX SPOT, OMIE, and Nord Pool, and across 11 European countries (Belgium, Denmark, Finland, France, Germany, Netherlands, Norway, Portugal, Sweden, Spain, and Switzerland).

Suggested Citation

  • Aliyon, Kasra & Ritvanen, Jouni, 2024. "Deep learning-based electricity price forecasting: Findings on price predictability and European electricity markets," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026513
    DOI: 10.1016/j.energy.2024.132877
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224026513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132877?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Shuhan & Sun, Wenqiang, 2023. "Attention mechanism-aided data- and knowledge-driven soft sensors for predicting blast furnace gas generation," Energy, Elsevier, vol. 262(PA).
    2. Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Bidding strategy design for electric vehicle aggregators in the day-ahead electricity market considering price volatility: A risk-averse approach," Energy, Elsevier, vol. 283(C).
    3. Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
    4. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
    5. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    6. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    7. Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
    8. Lago, Jesus & De Ridder, Fjo & Vrancx, Peter & De Schutter, Bart, 2018. "Forecasting day-ahead electricity prices in Europe: The importance of considering market integration," Applied Energy, Elsevier, vol. 211(C), pages 890-903.
    9. Wu, Jiahui & Wang, Jidong & Kong, Xiangyu, 2022. "Strategic bidding in a competitive electricity market: An intelligent method using Multi-Agent Transfer Learning based on reinforcement learning," Energy, Elsevier, vol. 256(C).
    10. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    11. Alan Rai & Tim Nelson, 2021. "Financing costs and barriers to entry in Australia’s electricity market," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 13(6), pages 730-754, March.
    12. Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2020. "Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges," Applied Energy, Elsevier, vol. 277(C).
    13. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    14. Xiong, Xiaoping & Qing, Guohua, 2023. "A hybrid day-ahead electricity price forecasting framework based on time series," Energy, Elsevier, vol. 264(C).
    15. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    16. Rodrigo A. de Marcos & Derek W. Bunn & Antonio Bello & Javier Reneses, 2020. "Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks," Energies, MDPI, vol. 13(20), pages 1-14, October.
    17. Aliyon, Kasra & Rajaee, Fatemeh & Ritvanen, Jouni, 2023. "Use of artificial intelligence in reducing energy costs of a post-combustion carbon capture plant," Energy, Elsevier, vol. 278(PA).
    18. Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
    19. Wei Li & Denis Mike Becker, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Papers 2101.05249, arXiv.org, revised Jul 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    2. Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
    3. Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
    4. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    5. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    6. Deniz Kenan Kılıç & Peter Nielsen & Amila Thibbotuwawa, 2024. "Intraday Electricity Price Forecasting via LSTM and Trading Strategy for the Power Market: A Case Study of the West Denmark DK1 Grid Region," Energies, MDPI, vol. 17(12), pages 1-15, June.
    7. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    8. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Sharma, Ekta & Salcedo-Sanz, Sancho & Barua, Prabal Datta & Rajendra Acharya, U., 2024. "Half-hourly electricity price prediction with a hybrid convolution neural network-random vector functional link deep learning approach," Applied Energy, Elsevier, vol. 374(C).
    9. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    10. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Jesus Lopez-Sotelo & David Celeita, 2023. "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture," Energies, MDPI, vol. 16(19), pages 1-24, September.
    11. Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
    12. Demir, Sumeyra & Mincev, Krystof & Kok, Koen & Paterakis, Nikolaos G., 2021. "Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting," Applied Energy, Elsevier, vol. 304(C).
    13. Wu, Han & Liang, Yan & Gao, Xiao-Zhi & Du, Pei, 2024. "Auditory-circuit-motivated deep network with application to short-term electricity price forecasting," Energy, Elsevier, vol. 288(C).
    14. Yang, Haolin & Schell, Kristen R., 2021. "Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets," Applied Energy, Elsevier, vol. 299(C).
    15. Bikeri Adline & Kazushi Ikeda, 2023. "A Hawkes Model Approach to Modeling Price Spikes in the Japanese Electricity Market," Energies, MDPI, vol. 16(4), pages 1-20, February.
    16. Ciaran O'Connor & Joseph Collins & Steven Prestwich & Andrea Visentin, 2024. "Electricity Price Forecasting in the Irish Balancing Market," Papers 2402.06714, arXiv.org.
    17. Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
    18. Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.
    19. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    20. Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.