Use of artificial intelligence in reducing energy costs of a post-combustion carbon capture plant
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127834
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2022. "Exergoeconomic analysis and optimization of a solar energy-based integrated system with oxy-combustion for combined power cycle and carbon capturing," Energy, Elsevier, vol. 250(C).
- Park, Sung Ho & Lee, Seung Jong & Lee, Jin Wook & Chun, Sung Nam & Lee, Jung Bin, 2015. "The quantitative evaluation of two-stage pre-combustion CO2 capture processes using the physical solvents with various design parameters," Energy, Elsevier, vol. 81(C), pages 47-55.
- Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
- Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
- Sipöcz, Nikolett & Tobiesen, Finn Andrew & Assadi, Mohsen, 2011. "The use of Artificial Neural Network models for CO2 capture plants," Applied Energy, Elsevier, vol. 88(7), pages 2368-2376, July.
- Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
- Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
- Shalaby, Abdelhamid & Elkamel, Ali & Douglas, Peter L. & Zhu, Qinqin & Zheng, Qipeng P., 2021. "A machine learning approach for modeling and optimization of a CO2 post-combustion capture unit," Energy, Elsevier, vol. 215(PA).
- Li, Jinlong & Wang, ZhuoTeng & Zhang, Shuai & Shi, Xilin & Xu, Wenjie & Zhuang, Duanyang & Liu, Jia & Li, Qingdong & Chen, Yunmin, 2022. "Machine-learning-based capacity prediction and construction parameter optimization for energy storage salt caverns," Energy, Elsevier, vol. 254(PA).
- Golizadeh Akhlaghi, Yousef & Aslansefat, Koorosh & Zhao, Xudong & Sadati, Saba & Badiei, Ali & Xiao, Xin & Shittu, Samson & Fan, Yi & Ma, Xiaoli, 2021. "Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050," Applied Energy, Elsevier, vol. 281(C).
- Szega, Marcin & Żymełka, Piotr & Janda, Tomasz, 2022. "Improving the accuracy of electricity and heat production forecasting in a supervision computer system of a selected gas-fired CHP plant operation," Energy, Elsevier, vol. 239(PE).
- Lin, Mingqiang & Yan, Chenhao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2022. "Lithium-ion batteries health prognosis via differential thermal capacity with simulated annealing and support vector regression," Energy, Elsevier, vol. 250(C).
- Wang, Erlei & Xia, Jiangying & Li, Jia & Sun, Xianke & Li, Hao, 2022. "Parameters exploration of SOFC for dynamic simulation using adaptive chaotic grey wolf optimization algorithm," Energy, Elsevier, vol. 261(PA).
- Chegari, Badr & Tabaa, Mohamed & Simeu, Emmanuel & Moutaouakkil, Fouad & Medromi, Hicham, 2022. "An optimal surrogate-model-based approach to support comfortable and nearly zero energy buildings design," Energy, Elsevier, vol. 248(C).
- Dai, Yeming & Wang, Yanxin & Leng, Mingming & Yang, Xinyu & Zhou, Qiong, 2022. "LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method," Energy, Elsevier, vol. 256(C).
- Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
- Spinti, Jennifer P. & Smith, Philip J. & Smith, Sean T., 2022. "Atikokan Digital Twin: Machine learning in a biomass energy system," Applied Energy, Elsevier, vol. 310(C).
- Bartela, Łukasz & Skorek-Osikowska, Anna & Kotowicz, Janusz, 2014. "Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation," Energy, Elsevier, vol. 64(C), pages 513-523.
- Rubén M. Montañés & Nina E. Flø & Lars O. Nord, 2017. "Dynamic Process Model Validation and Control of the Amine Plant at CO 2 Technology Centre Mongstad," Energies, MDPI, vol. 10(10), pages 1-36, October.
- Akinola, Toluleke E. & Bonilla Prado, Phebe L. & Wang, Meihong, 2022. "Experimental studies, molecular simulation and process modelling\simulation of adsorption-based post-combustion carbon capture for power plants: A state-of-the-art review," Applied Energy, Elsevier, vol. 317(C).
- Vo Thanh, Hung & Yasin, Qamar & Al-Mudhafar, Watheq J. & Lee, Kang-Kun, 2022. "Knowledge-based machine learning techniques for accurate prediction of CO2 storage performance in underground saline aquifers," Applied Energy, Elsevier, vol. 314(C).
- Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
- Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
- Yao, Qiuxiang & Wang, Linyang & Ma, Mingming & Ma, Li & He, Lei & Ma, Duo & Sun, Ming, 2024. "A quantitative investigation on pyrolysis behaviors of metal ion-exchanged coal macerals by interpretable machine learning algorithms," Energy, Elsevier, vol. 300(C).
- Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
- Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique," Energies, MDPI, vol. 16(18), pages 1-23, September.
- Hilger, Hannes & Witthaut, Dirk & Dahmen, Manuel & Rydin Gorjão, Leonardo & Trebbien, Julius & Cramer, Eike, 2024. "Multivariate scenario generation of day-ahead electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 367(C).
- Abdul Manaf, Norhuda & Qadir, Abdul & Abbas, Ali, 2016. "Temporal multiscalar decision support framework for flexible operation of carbon capture plants targeting low-carbon management of power plant emissions," Applied Energy, Elsevier, vol. 169(C), pages 912-926.
- Siti Rosilah Arsad & Muhamad Haziq Hasnul Hadi & Nayli Aliah Mohd Afandi & Pin Jern Ker & Shirley Gee Hoon Tang & Madihah Mohd Afzal & Santhi Ramanathan & Chai Phing Chen & Prajindra Sankar Krishnan &, 2023. "The Impact of COVID-19 on the Energy Sector and the Role of AI: An Analytical Review on Pre- to Post-Pandemic Perspectives," Energies, MDPI, vol. 16(18), pages 1-31, September.
- Adela Bâra & Simona-Vasilica Oprea & Bogdan George Tudorică, 2024. "From the East-European Regional Day-Ahead Markets to a Global Electricity Market," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2525-2557, June.
- Morgan, Joshua C. & Chinen, Anderson Soares & Anderson-Cook, Christine & Tong, Charles & Carroll, John & Saha, Chiranjib & Omell, Benjamin & Bhattacharyya, Debangsu & Matuszewski, Michael & Bhat, K. S, 2020. "Development of a framework for sequential Bayesian design of experiments: Application to a pilot-scale solvent-based CO2 capture process," Applied Energy, Elsevier, vol. 262(C).
- Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
- van Zyl, Corne & Ye, Xianming & Naidoo, Raj, 2024. "Harnessing eXplainable artificial intelligence for feature selection in time series energy forecasting: A comparative analysis of Grad-CAM and SHAP," Applied Energy, Elsevier, vol. 353(PA).
- Zhang, Xiaokong & Chai, Jian & Tian, Lingyue & Yang, Ying & Zhang, Zhe George & Pan, Yue, 2023. "Forecast and structural characteristics of China's oil product consumption embedded in bottom-line thinking," Energy, Elsevier, vol. 278(PA).
- Cao, Hui & Lin, Jiajing & Li, Nan, 2023. "Optimal control and energy efficiency evaluation of district ice storage system," Energy, Elsevier, vol. 276(C).
- Sai, Wei & Pan, Zehua & Liu, Siyu & Jiao, Zhenjun & Zhong, Zheng & Miao, Bin & Chan, Siew Hwa, 2023. "Event-driven forecasting of wholesale electricity price and frequency regulation price using machine learning algorithms," Applied Energy, Elsevier, vol. 352(C).
- Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.
- Xu, Gaoyuan & Shi, Jian & Wu, Jiaman & Lu, Chenbei & Wu, Chenye & Wang, Dan & Han, Zhu, 2024. "An optimal solutions-guided deep reinforcement learning approach for online energy storage control," Applied Energy, Elsevier, vol. 361(C).
- Deniz Kenan Kılıç & Peter Nielsen & Amila Thibbotuwawa, 2024. "Intraday Electricity Price Forecasting via LSTM and Trading Strategy for the Power Market: A Case Study of the West Denmark DK1 Grid Region," Energies, MDPI, vol. 17(12), pages 1-15, June.
- Hou, D. & Evins, R., 2024. "A protocol for developing and evaluating neural network-based surrogate models and its application to building energy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Wu, Han & Liang, Yan & Gao, Xiao-Zhi & Du, Pei, 2024. "Auditory-circuit-motivated deep network with application to short-term electricity price forecasting," Energy, Elsevier, vol. 288(C).
More about this item
Keywords
Carbon capture and storage (CCS); Post-combustion carbon capture; Surrogate machine learning; Deep learning; SHapley additive exPlanations (SHAP); Explainable artificial intelligence (XAI);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012288. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.