IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224026203.html
   My bibliography  Save this article

Enhancing data center cooling efficiency and ability: A comprehensive review of direct liquid cooling technologies

Author

Listed:
  • Kong, Rui
  • Zhang, Hainan
  • Tang, Mingsheng
  • Zou, Huiming
  • Tian, Changqing
  • Ding, Tao

Abstract

As data centers increasingly become the backbone of the digital age, managing their substantial energy consumption and mitigating heat generation are paramount. This paper focuses on direct liquid cooling as a transformative technology for enhancing energy efficiency and operational safety in high-density computing environments. Significant advancements and persisting challenges in this field have been identified by analyzing various direct liquid cooling methodologies including immersion, spray/jet, and microchannel cooling. Comparative analysis of these systems reveals their potential to substantially lower thermal resistances and improve energy utilization. Despite these advancements, the research highlights persistent challenges such as integration complexities and scalability issues. Recommendations for future research directions to improve the efficiency and ability of direct liquid cooling applications in data centers were concluded, emphasizing the need for user-friendly and cost-effective solutions, comprehensive guidelines for cooling method selection, and hybrid cooling systems. It also recommends advanced energy management strategies such as real-time power adjustment that dynamically matches energy supply with computational demand to optimize efficiency. These contributions underscore the importance of advancing data center cooling technologies to meet future demands.

Suggested Citation

  • Kong, Rui & Zhang, Hainan & Tang, Mingsheng & Zou, Huiming & Tian, Changqing & Ding, Tao, 2024. "Enhancing data center cooling efficiency and ability: A comprehensive review of direct liquid cooling technologies," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026203
    DOI: 10.1016/j.energy.2024.132846
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224026203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    2. Ma, Xiaochen & Shi, Wenchao & Yang, Hongxing, 2022. "Study on water spraying distribution to improve the energy recovery performance of indirect evaporative coolers with nozzle arrangement optimization," Applied Energy, Elsevier, vol. 318(C).
    3. Kandasamy, Ranjith & Ho, Jin Yao & Liu, Pengfei & Wong, Teck Neng & Toh, Kok Chuan & Chua, Sunshine Jr, 2022. "Two-phase spray cooling for high ambient temperature data centers: Evaluation of system performance," Applied Energy, Elsevier, vol. 305(C).
    4. Cho, Jinkyun & Lim, Seung-beom, 2023. "Balanced comparative assessment of thermal performance and energy efficiency for three cooling solutions in data centers," Energy, Elsevier, vol. 285(C).
    5. Wang, Peng & Sun, Junqing & Yoon, Sungmin & Zhao, Liang & Liang, Ruobing, 2024. "A global optimization method for data center air conditioning water systems based on predictive optimization control," Energy, Elsevier, vol. 295(C).
    6. Li, Chao & Mao, Ruiyong & Wang, Yong & Zhang, Jun & Lan, Jiang & Zhang, Zujing, 2024. "Experimental study on direct evaporative cooling for free cooling of data centers," Energy, Elsevier, vol. 288(C).
    7. Hajialibabaei, Mahsa & Saghir, M.Ziad & Dincer, Ibrahim & Bicer, Yusuf, 2024. "Optimization of heat dissipation in novel design wavy channel heat sinks for better performance," Energy, Elsevier, vol. 297(C).
    8. Chen, Hua & Cheng, Wen-long & Zhang, Wei-wei & Peng, Yu-hang & Jiang, Li-jia, 2017. "Energy saving evaluation of a novel energy system based on spray cooling for supercomputer center," Energy, Elsevier, vol. 141(C), pages 304-315.
    9. Zheng, Zhuang & Shafique, Muhammad & Luo, Xiaowei & Wang, Shengwei, 2024. "A systematic review towards integrative energy management of smart grids and urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Sun, Xiaoqing & Zhang, Ce & Han, Zongwei & Dong, Jiaxiang & Zhang, Yiqi & Li, Mengyi & Li, Xiuming & Wang, Qinghai & Wen, Zhenwu & Zheng, Baoli, 2023. "Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers," Energy, Elsevier, vol. 274(C).
    11. Lu, Tao & Lü, Xiaoshu & Välisuo, Petri & Zhang, Qunli & Clements-Croome, Derek, 2024. "Innovative approaches for deep decarbonization of data centers and building space heating networks: Modeling and comparison of novel waste heat recovery systems for liquid cooling systems," Applied Energy, Elsevier, vol. 357(C).
    12. Kanbur, Baris Burak & Wu, Chenlong & Fan, Simiao & Duan, Fei, 2021. "System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments," Energy, Elsevier, vol. 217(C).
    13. Remco Erp & Reza Soleimanzadeh & Luca Nela & Georgios Kampitsis & Elison Matioli, 2020. "Co-designing electronics with microfluidics for more sustainable cooling," Nature, Nature, vol. 585(7824), pages 211-216, September.
    14. Liu, Pengfei & Kandasamy, Ranjith & Ho, Jin Yao & Wong, Teck Neng & Toh, Kok Chuan, 2023. "Dynamic performance analysis and thermal modelling of a novel two-phase spray cooled rack system for data center cooling," Energy, Elsevier, vol. 269(C).
    15. He, Wei & Yin, Ershuai & Zhou, Fan & Zhao, Yang & Hu, Dinghua & Li, Jiaqi & Li, Qiang, 2024. "Integrated manifold microchannels and near-junction cooling for enhanced thermal management in 3D heterogeneous packaging technology," Energy, Elsevier, vol. 305(C).
    16. Qu, Shengli & Duan, Kaiwen & Guo, Yuxiang & Feng, Yiwei & Wang, Chuang & Xing, Ziwen, 2024. "Real-time optimization of the liquid-cooled data center based on cold plates under different ambient temperatures and thermal loads," Applied Energy, Elsevier, vol. 363(C).
    17. Wang, Shangming & Zhou, Zhifu & Sang, Xuehao & Chen, Bin & Romeos, Alexandros & Giannadakis, Athanasios & Thrassos, Panidis, 2023. "Coupling dynamic thermal analysis and surface modification to enhance heat dissipation of R410A spray cooling for high-power electronics," Energy, Elsevier, vol. 284(C).
    18. Zhang, Ce & Han, Zongwei & Dong, Jiaxiang & Li, Mengyi & Zhang, Yiqi & Li, Xiuming & Wen, Zhenwu & Wang, Qinghai, 2024. "A novel data center air conditioner and its application scheme balancing high-efficiency cooling and waste heat recovery: Environmental and economic analysis," Energy, Elsevier, vol. 291(C).
    19. Huang, Yongping & Liu, Bin & Xu, Shijie & Bao, Chujin & Zhong, Yangfan & Zhang, Chengbin, 2024. "Experimental study on the immersion liquid cooling performance of high-power data center servers," Energy, Elsevier, vol. 297(C).
    20. Lionello, Michele & Rampazzo, Mirco & Beghi, Alessandro & Varagnolo, Damiano & Vesterlund, Mattias, 2020. "Graph-based modelling and simulation of liquid immersion cooling systems," Energy, Elsevier, vol. 207(C).
    21. Ma, Xiaowei & Zhang, Quan & Zou, Sikai, 2022. "An experimental and numerical study on the thermal performance of a loop thermosyphon integrated with latent thermal energy storage for emergency cooling in a data center," Energy, Elsevier, vol. 253(C).
    22. Aili, Ablimit & Long, Wenjun & Cao, Zhiwei & Wen, Yonggang, 2024. "Radiative free cooling for energy and water saving in data centers," Applied Energy, Elsevier, vol. 359(C).
    23. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    24. Liu, Xiaoou, 2024. "Research on collaborative scheduling of internet data center and regional integrated energy system based on electricity-heat-water coupling," Energy, Elsevier, vol. 292(C).
    25. Ding, Tao & Chen, Xiaoxuan & Cao, Hanwen & He, Zhiguang & Wang, Jianmin & Li, Zhen, 2021. "Principles of loop thermosyphon and its application in data center cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    26. Xu, Haojie & Wang, Junfeng & Li, Bin & Yu, Kai & Wang, Hai & Tian, Jiameng & Li, Bufa, 2022. "Electrospray characteristics and cooling performance of dielectric fluid HFE-7100," Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Zhaopeng & Du, Shuai & Zhao, Tianhao & Chen, Zhihui & Wang, Ruzhu, 2024. "High-power-density adsorption chiller driven by data center waste heat using encapsulated composite as adsorbent," Energy, Elsevier, vol. 311(C).
    2. Tieyu Gao & Jiadian Wang & Haonan Sha & Hao Yang & Chenguang Lai & Xiaojin Fu & Guangtao Zhai & Junxiong Zeng, 2025. "Investigation on Thermal Performance of a Battery Pack Cooled by Refrigerant R134a in Ribbed Cooling Channels," Energies, MDPI, vol. 18(4), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    2. Zhang, Yiqi & Li, Mengyi & Dong, Jiaxiang & Zhang, Ce & Li, Xiuming & Han, Zongwei, 2023. "Study on the impacts of refrigerant leakage on the performance and reliability of datacenter composite air conditioning system," Energy, Elsevier, vol. 284(C).
    3. Sijun Xu & Hua Zhang & Zilong Wang, 2023. "Thermal Management and Energy Consumption in Air, Liquid, and Free Cooling Systems for Data Centers: A Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
    4. Zhou, Jing & Kanbur, Baris Burak & Le, Duc Van & Tan, Rui & Duan, Fei, 2023. "Multi-criteria assessments of increasing supply air temperature in tropical data center," Energy, Elsevier, vol. 271(C).
    5. Liu, Pengfei & Kandasamy, Ranjith & Ho, Jin Yao & Wong, Teck Neng & Toh, Kok Chuan, 2023. "Dynamic performance analysis and thermal modelling of a novel two-phase spray cooled rack system for data center cooling," Energy, Elsevier, vol. 269(C).
    6. Chen, Xiaoxuan & Wang, Xinyi & Wang, Lu & Zheng, Hong & Ding, Tao & Li, Zhen, 2025. "Multistage data center cooling system for temperature gradation and matching," Applied Energy, Elsevier, vol. 377(PC).
    7. Chen, Dong & Chui, Chee-Kong & Lee, Poh Seng, 2025. "Adaptive physically consistent neural networks for data center thermal dynamics modeling," Applied Energy, Elsevier, vol. 377(PD).
    8. Tianshi Zhang & Ziming Mo & Xiaoyu Xu & Xiaoyan Liu & Haopeng Chen & Zhiwu Han & Yuying Yan & Yingai Jin, 2022. "Advanced Study of Spray Cooling: From Theories to Applications," Energies, MDPI, vol. 15(23), pages 1-40, December.
    9. Gao, Qiang & Lu, Yue & Liu, Xiangdong & Chen, Yongping, 2024. "A novel pulse liquid immersion cooling strategy for Lithium-ion battery pack," Energy, Elsevier, vol. 310(C).
    10. Zhang, Qiaoxin & Tu, Rang & Yang, Xu, 2024. "Optimization operation of data Center's distributed air conditioning system based on supply-demand matching," Energy, Elsevier, vol. 306(C).
    11. Behzadi, Amirmohammad & Duwig, Christophe & Ploskic, Adnan & Holmberg, Sture & Sadrizadeh, Sasan, 2024. "Application to novel smart techniques for decarbonization of commercial building heating and cooling through optimal energy management," Applied Energy, Elsevier, vol. 376(PA).
    12. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    13. He, Yue & Lei, Yue & Gao, Shan & Luo, Xuhui & Sun, Lixin & Feng, Chi, 2024. "How to rapidly and accurately evaluate the cooling performance of radiative cooling materials?," Renewable Energy, Elsevier, vol. 236(C).
    14. Li, Song & Zhang, Han & Li, Shuo & Wang, Jiaqi & Wang, Qiuwang & Cheng, Zhilong, 2024. "Advances in hierarchically porous materials: Fundamentals, preparation and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    15. Tungom, Chia E. & Niu, Ben & Wang, Hong, 2025. "SWAPP: Swarm precision policy optimization with dynamic action bound adjustment for energy management in smart cities," Applied Energy, Elsevier, vol. 377(PA).
    16. Wu, Chunxia & Sun, Yalong & Tang, Heng & Zhang, Shiwei & Yuan, Wei & Zhu, Likuan & Tang, Yong, 2024. "A review on the liquid cooling thermal management system of lithium-ion batteries," Applied Energy, Elsevier, vol. 375(C).
    17. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    18. Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
    19. Tiezhu Sun & Xiaojun Huang & Caihang Liang & Riming Liu & Yongcheng Yan, 2023. "Energy Consumption and Energy Saving Analysis of Air-Conditioning Systems of Data Centers in Typical Cities in China," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    20. Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.