Author
Listed:
- Behzadi, Amirmohammad
- Duwig, Christophe
- Ploskic, Adnan
- Holmberg, Sture
- Sadrizadeh, Sasan
Abstract
The present article proposes a novel smart building energy system utilizing deep geothermal resources through naturally-driven borehole thermal energy storage interacting with the district heating network. It includes an intelligent control strategy for lowering operational costs, making better use of renewables, and avoiding CO2 emissions by eliminating heat pumps and cooling machines to address the heating and cooling demands of a commercial building in Uppsala, a city near Stockholm, Sweden. After comprehensively conducting techno-environmental and economic assessments, the system is fine-tuned using artificial neural networks (ANN) for optimization. The study aims to determine which ANN design and training procedure is the most efficient in terms of accuracy and computing speed. It also assesses well-known optimization algorithms using the TOPSIS decision-making technique to find the best trade-off among various indicators. According to the parametric results, deeper boreholes can collect more geothermal energy and reduce CO2 emissions. However, deep drilling becomes more expensive overall, suggesting the need for multi-objective optimization to balance costs and techno-environmental benefits. The results indicate that Levenberg-Marquardt algorithms offer the optimum trade-off between computation time and error minimization. From a TOPSIS perspective, while the dragonfly algorithm is not ideal for optimizing the suggested system, the non-dominated sorting genetic algorithm is the most efficient since it yields more ideal points rated below 100. The optimization yields a higher energy production of 120 kWh/m2, as well as a decreased levelized cost of energy of 57 $/MWh, a shorter payback period of two years, and a reduced CO2 index of 1.90 kg/MWh. The analysis reveals that despite the high investment costs of 382.50 USD/m2, the system is financially beneficial in the long run due to a short payback period of around eight years, which aligns with the goals of future smart energy systems: reduce pollution and increase cost-effectiveness.
Suggested Citation
Behzadi, Amirmohammad & Duwig, Christophe & Ploskic, Adnan & Holmberg, Sture & Sadrizadeh, Sasan, 2024.
"Application to novel smart techniques for decarbonization of commercial building heating and cooling through optimal energy management,"
Applied Energy, Elsevier, vol. 376(PA).
Handle:
RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016076
DOI: 10.1016/j.apenergy.2024.124224
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016076. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.