IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v585y2020i7824d10.1038_s41586-020-2666-1.html
   My bibliography  Save this article

Co-designing electronics with microfluidics for more sustainable cooling

Author

Listed:
  • Remco Erp

    (Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL))

  • Reza Soleimanzadeh

    (Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL))

  • Luca Nela

    (Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL))

  • Georgios Kampitsis

    (Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL))

  • Elison Matioli

    (Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL))

Abstract

Thermal management is one of the main challenges for the future of electronics1–5. With the ever-increasing rate of data generation and communication, as well as the constant push to reduce the size and costs of industrial converter systems, the power density of electronics has risen6. Consequently, cooling, with its enormous energy and water consumption, has an increasingly large environmental impact7,8, and new technologies are needed to extract the heat in a more sustainable way—that is, requiring less water and energy9. Embedding liquid cooling directly inside the chip is a promising approach for more efficient thermal management5,10,11. However, even in state-of-the-art approaches, the electronics and cooling are treated separately, leaving the full energy-saving potential of embedded cooling untapped. Here we show that by co-designing microfluidics and electronics within the same semiconductor substrate we can produce a monolithically integrated manifold microchannel cooling structure with efficiency beyond what is currently available. Our results show that heat fluxes exceeding 1.7 kilowatts per square centimetre can be extracted using only 0.57 watts per square centimetre of pumping power. We observed an unprecedented coefficient of performance (exceeding 10,000) for single-phase water-cooling of heat fluxes exceeding 1 kilowatt per square centimetre, corresponding to a 50-fold increase compared to straight microchannels, as well as a very high average Nusselt number of 16. The proposed cooling technology should enable further miniaturization of electronics, potentially extending Moore’s law and greatly reducing the energy consumption in cooling of electronics. Furthermore, by removing the need for large external heat sinks, this approach should enable the realization of very compact power converters integrated on a single chip.

Suggested Citation

  • Remco Erp & Reza Soleimanzadeh & Luca Nela & Georgios Kampitsis & Elison Matioli, 2020. "Co-designing electronics with microfluidics for more sustainable cooling," Nature, Nature, vol. 585(7824), pages 211-216, September.
  • Handle: RePEc:nat:nature:v:585:y:2020:i:7824:d:10.1038_s41586-020-2666-1
    DOI: 10.1038/s41586-020-2666-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2666-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2666-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong Wang & Yalong Kong & Zhigang Liu & Lin Guo & Yawei Yang, 2023. "A Novel Pressure-Controlled Molecular Dynamics Simulation Method for Nanoscale Boiling Heat Transfer," Energies, MDPI, vol. 16(5), pages 1-13, February.
    2. Rui, Ziliang & Sun, Hong & Ma, Jie & Peng, Hao, 2023. "Experimental study and prediction on the thermal management performance of SDS aqueous solution based microchannel flow boiling system," Energy, Elsevier, vol. 282(C).
    3. Liu, H.R. & Li, B.J. & Hua, L.J. & Wang, R.Z., 2022. "Designing thermoelectric self-cooling system for electronic devices: Experimental investigation and model validation," Energy, Elsevier, vol. 243(C).
    4. Nan Wu & Mingmei Sun & Hong Guo & Zhongnan Xie & Shijie Du, 2023. "Enhancement Effect of a Diamond Network on the Flow Boiling Heat Transfer Characteristics of a Diamond/Cu Heat Sink," Energies, MDPI, vol. 16(21), pages 1-17, October.
    5. Xu Wang & Pallav Purohit, 2022. "Transitioning to low-GWP alternatives with enhanced energy efficiency in cooling non-residential buildings of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-28, October.
    6. Krzysztof Dziarski & Arkadiusz Hulewicz & Grzegorz Dombek & Łukasz Drużyński, 2022. "Indirect Thermographic Temperature Measurement of a Power-Rectifying Diode Die," Energies, MDPI, vol. 15(9), pages 1-17, April.
    7. Shuhuan Wei & Dini Wang, 2023. "Improvement of Constructal Optimization for “Volume-Point” Heat Conduction Based on Uniformity Principle of Temperature Difference Fields," Mathematics, MDPI, vol. 11(16), pages 1-14, August.
    8. Haofan Mu & Weixiu Shi, 2024. "Review of Operation Performance and Application Status of Pulsating Heat Pipe," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
    9. Yunfeng Li & Zhihui Xie & Daoguang Lin & Zhuoqun Lu & Yanlin Ge, 2023. "Constructal Optimizations of Liquid-Cooled Channels with Triangle or Square Sections in a Cylindrical Heating Body," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    10. Xiao, Lei & Luo, Kaiqi & Zhao, Dong & Wu, Zhanghua & Xu, Jingyuan & Luo, Ercang, 2024. "A highly efficient heat-driven thermoacoustic cooling system: Detailed study," Energy, Elsevier, vol. 293(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:585:y:2020:i:7824:d:10.1038_s41586-020-2666-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.