IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipds0306261924020208.html
   My bibliography  Save this article

Adaptive physically consistent neural networks for data center thermal dynamics modeling

Author

Listed:
  • Chen, Dong
  • Chui, Chee-Kong
  • Lee, Poh Seng

Abstract

Data centers (DCs) are vital for large-scale Internet services, yet their energy consumption poses a significant concern. Energy modeling for DCs is crucial for design, control, and retrofitting. Traditional physic-based models lack flexibility, while Neural Networks (NN) may not strictly adhere to physical principles and demand extensive data. The Physically Consistent Neural Networks (PCNN) framework, which incorporates physical laws into NN through positive coefficients, is introduced. Despite its innovative approach, PCNN struggles with accuracy and generalization in real-world thermal environments due to its reliance on empirically predetermined, static coefficients, which are costly to derive and limit adaptability to dynamic conditions. To address these limitations, this study proposes the Adaptive Physically Consistent Neural Networks (A-PCNN) framework. A-PCNN leverages NN with Softplus activation functions, replacing traditional preset and fixed coefficients to reduce trial-and-error costs and increase flexibility. Over a six-month real data center dataset case study, the A-PCNN framework significantly outperformed the traditional PCNN model. Specifically, it reduced the Mean Absolute Error by 17.3 % for a 15-min forecast and by 79.2 % over a seven-day period, using a Multilayer Perceptron (MLP) as the base model. Furthermore, the A-PCNN framework demonstrates remarkable adaptability. Whether based on a MLP or Long Short-Term Memory (LSTM) model, it consistently surpasses traditional methods in predictive accuracy across time frames from 15 min to 7 days. Its superior performance is especially notable in longer forecast periods.

Suggested Citation

  • Chen, Dong & Chui, Chee-Kong & Lee, Poh Seng, 2025. "Adaptive physically consistent neural networks for data center thermal dynamics modeling," Applied Energy, Elsevier, vol. 377(PD).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020208
    DOI: 10.1016/j.apenergy.2024.124637
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaoyu & Tian, Shuai & Ren, Jiawen & Jin, Xing & Zhou, Xin & Shi, Xing, 2024. "A novel resistance-capacitance model for evaluating urban building energy loads considering construction boundary heterogeneity," Applied Energy, Elsevier, vol. 361(C).
    2. Mahbod, Muhammad Haiqal Bin & Chng, Chin Boon & Lee, Poh Seng & Chui, Chee Kong, 2022. "Energy saving evaluation of an energy efficient data center using a model-free reinforcement learning approach," Applied Energy, Elsevier, vol. 322(C).
    3. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    4. Xuwei Xue & Nicola Calabretta, 2022. "Nanosecond optical switching and control system for data center networks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Bünning, Felix & Huber, Benjamin & Schalbetter, Adrian & Aboudonia, Ahmed & Hudoba de Badyn, Mathias & Heer, Philipp & Smith, Roy S. & Lygeros, John, 2022. "Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC," Applied Energy, Elsevier, vol. 310(C).
    7. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    8. Meng, Xiongzhuang & Zhou, Junli & Zhang, Xuejiao & Luo, Zhiwen & Gong, Hui & Gan, Ting, 2020. "Optimization of the thermal environment of a small-scale data center in China," Energy, Elsevier, vol. 196(C).
    9. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    10. Sun, Xiaoqing & Zhang, Ce & Han, Zongwei & Dong, Jiaxiang & Zhang, Yiqi & Li, Mengyi & Li, Xiuming & Wang, Qinghai & Wen, Zhenwu & Zheng, Baoli, 2023. "Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers," Energy, Elsevier, vol. 274(C).
    11. Ding, Tao & Chen, Xiaoxuan & Cao, Hanwen & He, Zhiguang & Wang, Jianmin & Li, Zhen, 2021. "Principles of loop thermosyphon and its application in data center cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Gong, Jun & Chew, Lup Wai & Lee, Poh Seng, 2024. "Theoretical model for high-rise solar chimneys and optimum shape for uniform flowrate distribution," Energy, Elsevier, vol. 298(C).
    13. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
    14. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
    15. Ni, Jiacheng & Bai, Xuelian, 2017. "A review of air conditioning energy performance in data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 625-640.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yanhua & Wang, Ningbo & Shao, Shuangquan & Huang, Congqi & Zhang, Zhentao & Li, Xiaoqiong & Wang, Youdong, 2024. "A review on hybrid physics and data-driven modeling methods applied in air source heat pump systems for energy efficiency improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    2. Xiao, Tianqi & You, Fengqi, 2024. "Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities," Applied Energy, Elsevier, vol. 353(PB).
    3. Zhang, Qingang & Zeng, Wei & Lin, Qinjie & Chng, Chin-Boon & Chui, Chee-Kong & Lee, Poh-Seng, 2023. "Deep reinforcement learning towards real-world dynamic thermal management of data centers," Applied Energy, Elsevier, vol. 333(C).
    4. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    5. Zhang, Qiaoxin & Tu, Rang & Yang, Xu, 2024. "Optimization operation of data Center's distributed air conditioning system based on supply-demand matching," Energy, Elsevier, vol. 306(C).
    6. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    7. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    8. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    9. Kong, Rui & Zhang, Hainan & Tang, Mingsheng & Zou, Huiming & Tian, Changqing & Ding, Tao, 2024. "Enhancing data center cooling efficiency and ability: A comprehensive review of direct liquid cooling technologies," Energy, Elsevier, vol. 308(C).
    10. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    11. Zhang, Yiqi & Li, Mengyi & Dong, Jiaxiang & Zhang, Ce & Li, Xiuming & Han, Zongwei, 2023. "Study on the impacts of refrigerant leakage on the performance and reliability of datacenter composite air conditioning system," Energy, Elsevier, vol. 284(C).
    12. Sun, Xiaoqing & Zhang, Ce & Han, Zongwei & Dong, Jiaxiang & Zhang, Yiqi & Li, Mengyi & Li, Xiuming & Wang, Qinghai & Wen, Zhenwu & Zheng, Baoli, 2023. "Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers," Energy, Elsevier, vol. 274(C).
    13. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    14. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    15. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    16. Guo, Fangzhou & Li, Ao & Yue, Bao & Xiao, Ziwei & Xiao, Fu & Yan, Rui & Li, Anbang & Lv, Yan & Su, Bing, 2024. "Improving the out-of-sample generalization ability of data-driven chiller performance models using physics-guided neural network," Applied Energy, Elsevier, vol. 354(PA).
    17. Taboga, Vincent & Gehring, Clement & Cam, Mathieu Le & Dagdougui, Hanane & Bacon, Pierre-Luc, 2024. "Neural differential equations for temperature control in buildings under demand response programs," Applied Energy, Elsevier, vol. 368(C).
    18. Mahbod, Muhammad Haiqal Bin & Chng, Chin Boon & Lee, Poh Seng & Chui, Chee Kong, 2022. "Energy saving evaluation of an energy efficient data center using a model-free reinforcement learning approach," Applied Energy, Elsevier, vol. 322(C).
    19. Du, Yahui & Zhou, Zhihua & Yang, Xiaochen & Yang, Xueqing & Wang, Cheng & Liu, Junwei & Yuan, Jianjuan, 2023. "Dynamic thermal environment management technologies for data center: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    20. Zhang, Xinqi & Shi, Jihao & Li, Junjie & Huang, Xinyan & Xiao, Fu & Wang, Qiliang & Usmani, Asif Sohail & Chen, Guoming, 2025. "Hydrogen jet and diffusion modeling by physics-informed graph neural network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.