IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9056-d988500.html
   My bibliography  Save this article

Analysis of an Evaporative Condensation System Coupled to a Microchannel-Separated Heat Pipe for Data Centers

Author

Listed:
  • Ying Wang

    (School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

  • Xiang Huang

    (School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

  • Junjie Chu

    (School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

  • Yan Du

    (School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

  • Xing Tang

    (BLUE-ON (Jiangsu) Environmental SYSTEM Co., Ltd., Taixing 225441, China)

  • Cong Dai

    (School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

  • Gang Ma

    (School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

Abstract

In the age of the digital economy, the data center is the most crucial piece of infrastructure. The issue of the excessive power consumption of a data center’s cooling system needs to be addressed as the national objective of “peak carbon and carbon neutrality” is increasingly promoted. In this study, a microchannel-separated heat pipe-cooling system with evaporative condensation is introduced. The system may switch between three modes of operation in response to changes in outdoor air quality parameters, thereby maximizing the utilization of natural cooling sources while lowering data centers’ cooling costs. The purpose of this paper is to analyze the energy-saving potential of the hybrid system through experimental tests. The results show that 114.4% is the ideal liquid-loading rate for the heat pipe system. Under working conditions in Xi’an, the annual operating hours of the three modes accounted for 47.2%, 6.1%, and 46.7%. The hybrid cooling system may save 62.04% of the energy used annually compared to the standard cooling system and the cooling system in the server room thanks to its yearly average COP of 9.43.

Suggested Citation

  • Ying Wang & Xiang Huang & Junjie Chu & Yan Du & Xing Tang & Cong Dai & Gang Ma, 2022. "Analysis of an Evaporative Condensation System Coupled to a Microchannel-Separated Heat Pipe for Data Centers," Energies, MDPI, vol. 15(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9056-:d:988500
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2014. "A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 622-638.
    2. Ham, Sang-Woo & Kim, Min-Hwi & Choi, Byung-Nam & Jeong, Jae-Weon, 2015. "Energy saving potential of various air-side economizers in a modular data center," Applied Energy, Elsevier, vol. 138(C), pages 258-275.
    3. Siriwardana, Jayantha & Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Potential of air-side economizers for data center cooling: A case study for key Australian cities," Applied Energy, Elsevier, vol. 104(C), pages 207-219.
    4. Yin Bi & Yugang Wang & Xiaoli Ma & Xudong Zhao, 2017. "Investigation on the Energy Saving Potential of Using a Novel Dew Point Cooling System in Data Centres," Energies, MDPI, vol. 10(11), pages 1-21, October.
    5. Ding, Tao & Chen, Xiaoxuan & Cao, Hanwen & He, Zhiguang & Wang, Jianmin & Li, Zhen, 2021. "Principles of loop thermosyphon and its application in data center cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    2. Sijun Xu & Hua Zhang & Zilong Wang, 2023. "Thermal Management and Energy Consumption in Air, Liquid, and Free Cooling Systems for Data Centers: A Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
    3. Habibi Khalaj, Ali & Scherer, Thomas & K. Halgamuge, Saman, 2016. "Energy, environmental and economical saving potential of data centers with various economizers across Australia," Applied Energy, Elsevier, vol. 183(C), pages 1528-1549.
    4. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tang, Mingsheng & Tian, Changqing, 2017. "Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon," Applied Energy, Elsevier, vol. 185(P2), pages 1604-1612.
    5. Cristina Ramos Cáceres & Suzanna Törnroth & Mattias Vesterlund & Andreas Johansson & Marcus Sandberg, 2022. "Data-Center Farming: Exploring the Potential of Industrial Symbiosis in a Subarctic Region," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    6. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    7. Ma, Xiaowei & Zhang, Quan & Zou, Sikai, 2022. "An experimental and numerical study on the thermal performance of a loop thermosyphon integrated with latent thermal energy storage for emergency cooling in a data center," Energy, Elsevier, vol. 253(C).
    8. Petrović, Stefan & Colangelo, Alessandro & Balyk, Olexandr & Delmastro, Chiara & Gargiulo, Maurizio & Simonsen, Mikkel Bosack & Karlsson, Kenneth, 2020. "The role of data centres in the future Danish energy system," Energy, Elsevier, vol. 194(C).
    9. Li, Jian & Jurasz, Jakub & Li, Hailong & Tao, Wen-Quan & Duan, Yuanyuan & Yan, Jinyue, 2020. "A new indicator for a fair comparison on the energy performance of data centers," Applied Energy, Elsevier, vol. 276(C).
    10. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    11. Cho, Jinkyun & Kim, Yundeok, 2016. "Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center," Applied Energy, Elsevier, vol. 165(C), pages 967-982.
    12. Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Ruixue Dong & Yuting Wu, 2022. "Experimental Investigation of Heat Transfer and Flow Characteristics of Split Natural Cooling System for Data Center Based on Micro Heat Pipe Array," Energies, MDPI, vol. 15(12), pages 1-22, June.
    13. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    14. Vesterlund, Mattias & Borisová, Stanislava & Emilsson, Ellinor, 2024. "Data center excess heat for mealworm farming, an applied analysis for sustainable protein production," Applied Energy, Elsevier, vol. 353(PA).
    15. Qiankun Chang & Yuanfeng Huang & Kaiyan Liu & Xin Xu & Yaohua Zhao & Song Pan, 2024. "Optimization Control Strategies and Evaluation Metrics of Cooling Systems in Data Centers: A Review," Sustainability, MDPI, vol. 16(16), pages 1-41, August.
    16. Zhang, L.Y. & Liu, Y.Y. & Guo, X. & Meng, X.Z. & Jin, L.W. & Zhang, Q.L. & Hu, W.J., 2017. "Experimental investigation and economic analysis of gravity heat pipe exchanger applied in communication base station," Applied Energy, Elsevier, vol. 194(C), pages 499-507.
    17. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    18. Oró, Eduard & Depoorter, Victor & Garcia, Albert & Salom, Jaume, 2015. "Energy efficiency and renewable energy integration in data centres. Strategies and modelling review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 429-445.
    19. Han, Zongwei & Ji, Qiang & Wei, Haotian & Xue, Da & Sun, Xiaoqing & Zhang, Xueping & Li, Xiuming, 2020. "Simulation study on performance of data center air-conditioning system with novel evaporative condenser," Energy, Elsevier, vol. 210(C).
    20. Shuja, Junaid & Gani, Abdullah & Shamshirband, Shahaboddin & Ahmad, Raja Wasim & Bilal, Kashif, 2016. "Sustainable Cloud Data Centers: A survey of enabling techniques and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 195-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9056-:d:988500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.