Study on the impacts of refrigerant leakage on the performance and reliability of datacenter composite air conditioning system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.129336
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Han, Zongwei & Zhang, Yanqing & Meng, Xin & Liu, Qiankun & Li, Weiliang & Han, Yu & Zhang, Yanhong, 2016. "Simulation study on the operating characteristics of the heat pipe for combined evaporative cooling of computer room air-conditioning system," Energy, Elsevier, vol. 98(C), pages 15-25.
- Zhang, Penglei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2015. "Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer," Applied Energy, Elsevier, vol. 160(C), pages 10-17.
- Han, Zongwei & Ji, Qiang & Wei, Haotian & Xue, Da & Sun, Xiaoqing & Zhang, Xueping & Li, Xiuming, 2020. "Simulation study on performance of data center air-conditioning system with novel evaporative condenser," Energy, Elsevier, vol. 210(C).
- Sun, Xiaoqing & Zhang, Ce & Han, Zongwei & Dong, Jiaxiang & Zhang, Yiqi & Li, Mengyi & Li, Xiuming & Wang, Qinghai & Wen, Zhenwu & Zheng, Baoli, 2023. "Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers," Energy, Elsevier, vol. 274(C).
- Ding, Tao & Chen, Xiaoxuan & Cao, Hanwen & He, Zhiguang & Wang, Jianmin & Li, Zhen, 2021. "Principles of loop thermosyphon and its application in data center cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Zhang, Hainan & Shao, Shuangquan & Tian, Changqing & Zhang, Kunzhu, 2018. "A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 789-798.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shao, Shuangquan & Liu, Haichao & Zhang, Hainan & Tian, Changqing, 2019. "Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers," Energy, Elsevier, vol. 185(C), pages 829-836.
- Cao, Jingyu & Hong, Xiaoqiang & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Pei, Gang & Leung, Michael K.H., 2020. "Performance characteristics of variable conductance loop thermosyphon for energy-efficient building thermal control," Applied Energy, Elsevier, vol. 275(C).
- Li, Chao & Mao, Ruiyong & Wang, Yong & Zhang, Jun & Lan, Jiang & Zhang, Zujing, 2024. "Experimental study on direct evaporative cooling for free cooling of data centers," Energy, Elsevier, vol. 288(C).
- Ma, Xiaowei & Zhang, Quan & Zou, Sikai, 2022. "An experimental and numerical study on the thermal performance of a loop thermosyphon integrated with latent thermal energy storage for emergency cooling in a data center," Energy, Elsevier, vol. 253(C).
- Ding, Tao & Chen, Xiaoxuan & Cao, Hanwen & He, Zhiguang & Wang, Jianmin & Li, Zhen, 2021. "Principles of loop thermosyphon and its application in data center cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Lee, Yee-Ting & Wen, Chih-Yung & Shih, Yang-Cheng & Li, Zhengtong & Yang, An-Shik, 2022. "Numerical and experimental investigations on thermal management for data center with cold aisle containment configuration," Applied Energy, Elsevier, vol. 307(C).
- Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
- Duan, Zhongdi & Ren, Tao & Ding, Guoliang & Chen, Jie & Mi, Xiaoguang, 2017. "Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG," Applied Energy, Elsevier, vol. 206(C), pages 972-982.
- Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
- Sun, Xiaoqing & Zhang, Ce & Han, Zongwei & Dong, Jiaxiang & Zhang, Yiqi & Li, Mengyi & Li, Xiuming & Wang, Qinghai & Wen, Zhenwu & Zheng, Baoli, 2023. "Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers," Energy, Elsevier, vol. 274(C).
- Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
- Goswami, Rohtash & Das, Ranjan, 2020. "Waste heat recovery from a biomass heat engine for thermoelectric power generation using two-phase thermosyphons," Renewable Energy, Elsevier, vol. 148(C), pages 1280-1291.
- Xu, Dawei & Yan, Tian & Xu, Xinhua & Wu, Wei & Zhu, Qiuyuan, 2024. "Study of the characteristics of the separated gravity heat pipe of a self-activated PCM wall system," Energy, Elsevier, vol. 298(C).
- Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
- Ying Wang & Xiang Huang & Junjie Chu & Yan Du & Xing Tang & Cong Dai & Gang Ma, 2022. "Analysis of an Evaporative Condensation System Coupled to a Microchannel-Separated Heat Pipe for Data Centers," Energies, MDPI, vol. 15(23), pages 1-18, November.
- Sijun Xu & Hua Zhang & Zilong Wang, 2023. "Thermal Management and Energy Consumption in Air, Liquid, and Free Cooling Systems for Data Centers: A Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
- Grzegorz Czerwiński & Jerzy Wołoszyn, 2021. "Numerical Study of a Cooling System Using Phase Change of a Refrigerant in a Thermosyphon," Energies, MDPI, vol. 14(12), pages 1-22, June.
- Zhongchao Zhao & Yong Zhang & Yanrui Zhang & Yimeng Zhou & Hao Hu, 2018. "Numerical Study on the Transient Thermal Performance of a Two-Phase Closed Thermosyphon," Energies, MDPI, vol. 11(6), pages 1-15, June.
- Pei, Wansheng & Zhang, Mingyi & Lai, Yuanming & Yan, Zhongrui & Li, Shuangyang, 2019. "Evaluation of the ground heat control capacity of a novel air-L-shaped TPCT-ground (ALTG) cooling system in cold regions," Energy, Elsevier, vol. 179(C), pages 655-668.
- Han, Zongwei & Ji, Qiang & Wei, Haotian & Xue, Da & Sun, Xiaoqing & Zhang, Xueping & Li, Xiuming, 2020. "Simulation study on performance of data center air-conditioning system with novel evaporative condenser," Energy, Elsevier, vol. 210(C).
More about this item
Keywords
Data center; Composite air conditioning system; Dynamic model; Refrigerant leakage; Reliability analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223027305. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.