IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v217y2021ics0360544220324804.html
   My bibliography  Save this article

System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments

Author

Listed:
  • Kanbur, Baris Burak
  • Wu, Chenlong
  • Fan, Simiao
  • Duan, Fei

Abstract

The study is to perform thermodynamic, economic and thermoeconomic assessments for two different direct immersion cooling data center systems which are the single-phase and the two-phase immersion cooling systems with the operating ranges of 3.2–27.6 kW and 6.8–15.9 kW, respectively. The two-phase cooling system achieves 72–79% better coefficient of performance trends than the single-phase cooling system. According to the present worth method, the replacement and the energy costs are found as the most dominant future cost terms for the two-phase and the single-phase cooling systems, respectively. The annual exergy cost of the two-phase cooling system is found up to 4.91 times the annual energy costs due to the dominant effects of the destruction and loss terms. Moreover, both cooling data center systems are compared to the existing air-cooled data center unit. They are found economically infeasible for the server power rates below 5 kW because of their higher capital investment costs while they become more affordable for higher server power rates with lower future cost terms.

Suggested Citation

  • Kanbur, Baris Burak & Wu, Chenlong & Fan, Simiao & Duan, Fei, 2021. "System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments," Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324804
    DOI: 10.1016/j.energy.2020.119373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220324804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petrović, Stefan & Colangelo, Alessandro & Balyk, Olexandr & Delmastro, Chiara & Gargiulo, Maurizio & Simonsen, Mikkel Bosack & Karlsson, Kenneth, 2020. "The role of data centres in the future Danish energy system," Energy, Elsevier, vol. 194(C).
    2. Kim, Min-Hwi & Ham, Sang-Woo & Park, Jun-Seok & Jeong, Jae-Weon, 2014. "Impact of integrated hot water cooling and desiccant-assisted evaporative cooling systems on energy savings in a data center," Energy, Elsevier, vol. 78(C), pages 384-396.
    3. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoeconomic assessment of a micro cogeneration system with LNG cold utilization," Energy, Elsevier, vol. 129(C), pages 171-184.
    4. Tsatsaronis, George & Pisa, Javier, 1994. "Exergoeconomic evaluation and optimization of energy systems — application to the CGAM problem," Energy, Elsevier, vol. 19(3), pages 287-321.
    5. Fulpagare, Yogesh & Bhargav, Atul, 2015. "Advances in data center thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 981-996.
    6. Zimmermann, Severin & Meijer, Ingmar & Tiwari, Manish K. & Paredes, Stephan & Michel, Bruno & Poulikakos, Dimos, 2012. "Aquasar: A hot water cooled data center with direct energy reuse," Energy, Elsevier, vol. 43(1), pages 237-245.
    7. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    8. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    9. Shao, Shuangquan & Liu, Haichao & Zhang, Hainan & Tian, Changqing, 2019. "Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers," Energy, Elsevier, vol. 185(C), pages 829-836.
    10. Chen, Hua & Cheng, Wen-long & Zhang, Wei-wei & Peng, Yu-hang & Jiang, Li-jia, 2017. "Energy saving evaluation of a novel energy system based on spray cooling for supercomputer center," Energy, Elsevier, vol. 141(C), pages 304-315.
    11. Moazamigoodarzi, Hosein & Tsai, Peiying Jennifer & Pal, Souvik & Ghosh, Suvojit & Puri, Ishwar K., 2019. "Influence of cooling architecture on data center power consumption," Energy, Elsevier, vol. 183(C), pages 525-535.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    2. Zhou, Jing & Kanbur, Baris Burak & Le, Duc Van & Tan, Rui & Duan, Fei, 2023. "Multi-criteria assessments of increasing supply air temperature in tropical data center," Energy, Elsevier, vol. 271(C).
    3. Yadav, Sandeep & Seethamraju, Srinivas & Banerjee, Rangan, 2023. "Cold energy recovery from liquefied natural gas regasification process for data centre cooling and power generation," Energy, Elsevier, vol. 283(C).
    4. Liu, Pengfei & Kandasamy, Ranjith & Ho, Jin Yao & Wong, Teck Neng & Toh, Kok Chuan, 2023. "Dynamic performance analysis and thermal modelling of a novel two-phase spray cooled rack system for data center cooling," Energy, Elsevier, vol. 269(C).
    5. He, Wei & Ding, Su & Zhang, Jifang & Pei, Chenchen & Zhang, Zhiheng & Wang, Yulin & Li, Hailong, 2021. "Performance optimization of server water cooling system based on minimum energy consumption analysis," Applied Energy, Elsevier, vol. 303(C).
    6. Liu, Qian & Sun, Chen & Zhang, Jingshu & Shi, Qianlei & Li, Kaixuan & Yu, Boxu & Xu, Chao & Ju, Xing, 2023. "The electro-thermal equalization behaviors of battery modules with immersion cooling," Applied Energy, Elsevier, vol. 351(C).
    7. Huang, Chu & Zhu, Haixi & Ma, Yinjie & E, Jiaqiang, 2023. "Evaluation of lithium battery immersion thermal management using a novel pentaerythritol ester coolant," Energy, Elsevier, vol. 284(C).
    8. Wang, Xinyue & Liu, Yang & Tian, Tong & Li, Ji, 2022. "Directly air-cooled compact looped heat pipe module for high power servers with extremely low power usage effectiveness," Applied Energy, Elsevier, vol. 319(C).
    9. Mohammad Faisal Khan & Asif Pervez & Umar Muhammad Modibbo & Jahangir Chauhan & Irfan Ali, 2021. "Flexible Fuzzy Goal Programming Approach in Optimal Mix of Power Generation for Socio-Economic Sustainability: A Case Study," Sustainability, MDPI, vol. 13(15), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    2. Wansheng Yang & Lin Yang & Junjie Ou & Zhongqi Lin & Xudong Zhao, 2019. "Investigation of Heat Management in High Thermal Density Communication Cabinet by a Rear Door Liquid Cooling System," Energies, MDPI, vol. 12(22), pages 1-25, November.
    3. Lu, Tao & Lü, Xiaoshu & Välisuo, Petri & Zhang, Qunli & Clements-Croome, Derek, 2024. "Innovative approaches for deep decarbonization of data centers and building space heating networks: Modeling and comparison of novel waste heat recovery systems for liquid cooling systems," Applied Energy, Elsevier, vol. 357(C).
    4. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    5. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    6. Gupta, Rohit & Moazamigoodarzi, Hosein & MirhoseiniNejad, SeyedMorteza & Down, Douglas G. & Puri, Ishwar K., 2020. "Workload management for air-cooled data centers: An energy and exergy based approach," Energy, Elsevier, vol. 209(C).
    7. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Thermal management in legacy air-cooled data centers: An overview and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Moazamigoodarzi, Hosein & Tsai, Peiying Jennifer & Pal, Souvik & Ghosh, Suvojit & Puri, Ishwar K., 2019. "Influence of cooling architecture on data center power consumption," Energy, Elsevier, vol. 183(C), pages 525-535.
    9. Du, Yahui & Zhou, Zhihua & Yang, Xiaochen & Yang, Xueqing & Wang, Cheng & Liu, Junwei & Yuan, Jianjuan, 2023. "Dynamic thermal environment management technologies for data center: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Liu, Pengfei & Kandasamy, Ranjith & Ho, Jin Yao & Wong, Teck Neng & Toh, Kok Chuan, 2023. "Dynamic performance analysis and thermal modelling of a novel two-phase spray cooled rack system for data center cooling," Energy, Elsevier, vol. 269(C).
    11. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    12. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2018. "Finite sum based thermoeconomic and sustainable analyses of the small scale LNG cold utilized power generation systems," Applied Energy, Elsevier, vol. 220(C), pages 944-961.
    13. Han, Zongwei & Ji, Qiang & Wei, Haotian & Xue, Da & Sun, Xiaoqing & Zhang, Xueping & Li, Xiuming, 2020. "Simulation study on performance of data center air-conditioning system with novel evaporative condenser," Energy, Elsevier, vol. 210(C).
    14. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Pal, Souvik & Puri, Ishwar K., 2020. "Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction," Energy, Elsevier, vol. 201(C).
    15. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    16. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    17. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    18. Shuja, Junaid & Gani, Abdullah & Shamshirband, Shahaboddin & Ahmad, Raja Wasim & Bilal, Kashif, 2016. "Sustainable Cloud Data Centers: A survey of enabling techniques and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 195-214.
    19. Matteo Manganelli & Alessandro Soldati & Luigi Martirano & Seeram Ramakrishna, 2021. "Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    20. Ding, Tao & Chen, Xiaoxuan & Cao, Hanwen & He, Zhiguang & Wang, Jianmin & Li, Zhen, 2021. "Principles of loop thermosyphon and its application in data center cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.