IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223004371.html
   My bibliography  Save this article

Multi-criteria assessments of increasing supply air temperature in tropical data center

Author

Listed:
  • Zhou, Jing
  • Kanbur, Baris Burak
  • Le, Duc Van
  • Tan, Rui
  • Duan, Fei

Abstract

With rapid development of information technology, the number and scale of data centers (DCs) increase rapidly. Therefore, cooling energy saving becomes crucial. This study proposes multi-criteria assessments of increasing supply air temperature (SAT) in the air-cooled DCs to analyze the interactions of internal and external factors in cooling systems comprehensively. Impacts of refrigerant charge (RC), evaporation pressure (EP) control limits, and hot aisle containment (HAC) with improvements in SAT are compared and analyzed according to the thermodynamic, economic, and thermoeconomic aspects. Overall, as SAT increases from 20 °C to 32 °C, the power usage effectiveness decreases by 16.8%–19.3%. Increase in RC leads to energy consumption and cost increasing at high SAT ranges, whereas high RC shows obvious advantages at the low SAT from the thermoeconomic aspects. Additionally, releasing EP control limits has significant advantages in reducing energy usage, and cumulative present worth of data center testbed can decrease by 5.2% and 6.0% at low and high RC operations, respectively. Return on investment and payback period analysis are also performed in the testbed with the HAC reform, and the payback period is about 1–3 years with the SAT setting range at 20–32 °C.

Suggested Citation

  • Zhou, Jing & Kanbur, Baris Burak & Le, Duc Van & Tan, Rui & Duan, Fei, 2023. "Multi-criteria assessments of increasing supply air temperature in tropical data center," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004371
    DOI: 10.1016/j.energy.2023.127043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223004371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Pal, Souvik & Puri, Ishwar K., 2020. "Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction," Energy, Elsevier, vol. 201(C).
    2. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    3. Jin, Chaoqiang & Bai, Xuelian & Yang, Chao & Mao, Wangxin & Xu, Xin, 2020. "A review of power consumption models of servers in data centers," Applied Energy, Elsevier, vol. 265(C).
    4. Shao, Shuangquan & Liu, Haichao & Zhang, Hainan & Tian, Changqing, 2019. "Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers," Energy, Elsevier, vol. 185(C), pages 829-836.
    5. Yuling Li & Xiaoying Wang & Peicong Luo & Qingyi Pan, 2019. "Thermal-Aware Hybrid Workload Management in a Green Datacenter towards Renewable Energy Utilization," Energies, MDPI, vol. 12(8), pages 1-18, April.
    6. Kanbur, Baris Burak & Wu, Chenlong & Fan, Simiao & Duan, Fei, 2021. "System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments," Energy, Elsevier, vol. 217(C).
    7. Habibi Khalaj, Ali & Scherer, Thomas & K. Halgamuge, Saman, 2016. "Energy, environmental and economical saving potential of data centers with various economizers across Australia," Applied Energy, Elsevier, vol. 183(C), pages 1528-1549.
    8. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2015. "Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration," Applied Energy, Elsevier, vol. 139(C), pages 384-397.
    9. Cho, Jinkyun & Park, Beungyong & Jang, Seungmin, 2022. "Development of an independent modular air containment system for high-density data centers: Experimental investigation of row-based cooling performance and PUE," Energy, Elsevier, vol. 258(C).
    10. Han, Zongwei & Ji, Qiang & Wei, Haotian & Xue, Da & Sun, Xiaoqing & Zhang, Xueping & Li, Xiuming, 2020. "Simulation study on performance of data center air-conditioning system with novel evaporative condenser," Energy, Elsevier, vol. 210(C).
    11. Lionello, Michele & Rampazzo, Mirco & Beghi, Alessandro & Varagnolo, Damiano & Vesterlund, Mattias, 2020. "Graph-based modelling and simulation of liquid immersion cooling systems," Energy, Elsevier, vol. 207(C).
    12. Güğül, Gül Nihal & Gökçül, Furkan & Eicker, Ursula, 2023. "Sustainability analysis of zero energy consumption data centers with free cooling, waste heat reuse and renewable energy systems: A feasibility study," Energy, Elsevier, vol. 262(PB).
    13. Han, Ouzhu & Ding, Tao & Mu, Chenggang & Jia, Wenhao & Ma, Zhoujun, 2023. "Waste heat reutilization and integrated demand response for decentralized optimization of data centers," Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Yin & Yang Guo & Man Zhang & Jiaqiang Wang & Linfeng Zhang & Da Feng & Weike Ding, 2024. "Performance Analysis of Lake Water Cooling Coupled with a Waste Heat Recovery System in the Data Center," Sustainability, MDPI, vol. 16(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    2. Han, Ouzhu & Ding, Tao & Mu, Chenggang & Jia, Wenhao & Ma, Zhoujun, 2023. "Waste heat reutilization and integrated demand response for decentralized optimization of data centers," Energy, Elsevier, vol. 264(C).
    3. He, Wei & Ding, Su & Zhang, Jifang & Pei, Chenchen & Zhang, Zhiheng & Wang, Yulin & Li, Hailong, 2021. "Performance optimization of server water cooling system based on minimum energy consumption analysis," Applied Energy, Elsevier, vol. 303(C).
    4. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    5. Han, Ouzhu & Ding, Tao & Yang, Miao & Jia, Wenhao & He, Xinran & Ma, Zhoujun, 2024. "A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization," Applied Energy, Elsevier, vol. 358(C).
    6. Sun, Xiaoqing & Zhang, Ce & Han, Zongwei & Dong, Jiaxiang & Zhang, Yiqi & Li, Mengyi & Li, Xiuming & Wang, Qinghai & Wen, Zhenwu & Zheng, Baoli, 2023. "Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers," Energy, Elsevier, vol. 274(C).
    7. Cristina Ramos Cáceres & Suzanna Törnroth & Mattias Vesterlund & Andreas Johansson & Marcus Sandberg, 2022. "Data-Center Farming: Exploring the Potential of Industrial Symbiosis in a Subarctic Region," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    8. Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Cho, Jinkyun & Lim, Seung-beom, 2023. "Balanced comparative assessment of thermal performance and energy efficiency for three cooling solutions in data centers," Energy, Elsevier, vol. 285(C).
    10. Li, Chao & Mao, Ruiyong & Wang, Yong & Zhang, Jun & Lan, Jiang & Zhang, Zujing, 2024. "Experimental study on direct evaporative cooling for free cooling of data centers," Energy, Elsevier, vol. 288(C).
    11. Mahbod, Muhammad Haiqal Bin & Chng, Chin Boon & Lee, Poh Seng & Chui, Chee Kong, 2022. "Energy saving evaluation of an energy efficient data center using a model-free reinforcement learning approach," Applied Energy, Elsevier, vol. 322(C).
    12. Vesterlund, Mattias & Borisová, Stanislava & Emilsson, Ellinor, 2024. "Data center excess heat for mealworm farming, an applied analysis for sustainable protein production," Applied Energy, Elsevier, vol. 353(PA).
    13. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Down, Douglas G. & Puri, Ishwar K., 2021. "Energy, exergy and computing efficiency based data center workload and cooling management," Applied Energy, Elsevier, vol. 299(C).
    14. Barone, Giovanni & Buonomano, Annamaria & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2023. "Towards zero energy infrastructure buildings: optimal design of envelope and cooling system," Energy, Elsevier, vol. 279(C).
    15. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    16. Liao, Yuepeng & Gan, Yunhua & Liu, Fengming & Li, Yong, 2024. "Experimental study on the thermal performance of aluminum three-dimensional vapor chamber heat sink with a louvered-fin stacked evaporator wick for data center servers," Energy, Elsevier, vol. 304(C).
    17. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Pal, Souvik & Puri, Ishwar K., 2020. "Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction," Energy, Elsevier, vol. 201(C).
    18. Rostirolla, G. & Grange, L. & Minh-Thuyen, T. & Stolf, P. & Pierson, J.M. & Da Costa, G. & Baudic, G. & Haddad, M. & Kassab, A. & Nicod, J.M. & Philippe, L. & Rehn-Sonigo, V. & Roche, R. & Celik, B. &, 2022. "A survey of challenges and solutions for the integration of renewable energy in datacenters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Lee, Yee-Ting & Wen, Chih-Yung & Shih, Yang-Cheng & Li, Zhengtong & Yang, An-Shik, 2022. "Numerical and experimental investigations on thermal management for data center with cold aisle containment configuration," Applied Energy, Elsevier, vol. 307(C).
    20. Leehter Yao & Jin-Hao Huang, 2019. "Multi-Objective Optimization of Energy Saving Control for Air Conditioning System in Data Center," Energies, MDPI, vol. 12(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.