IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006212.html
   My bibliography  Save this article

Battery calendar degradation trajectory prediction: Data-driven implementation and knowledge inspiration

Author

Listed:
  • Peng, Qiao
  • Li, Wei
  • Fowler, Michael
  • Chen, Tao
  • Jiang, Wei
  • Liu, Kailong

Abstract

—Batteries are acknowledged as an important carrier for next-generation energy and future electrification. Capacity degradation is an inevitable process that will eventually lead to a decline in battery performance. This paper presents a battery degradation trajectory prognostics approach under storage conditions based on the data-driven method with necessary knowledge inspiration. This data-driven approach is based on Support Vector Regression (SVR), incorporating mechanisms and empirical knowledge of battery calendar aging as the kernel. The developed data-driven approach is evaluated using two real but different capacity degradation datasets: Dataset A has two storage temperatures (25 °C and 45 °C) and storage SoCs (50% and 90%), while Dataset B has the same storage temperatures but four different storage SoCs (20%, 50%, 70% and 95%). The illustrative results show that the developed SVR-based data-driven approach with the battery knowledge-motivated kernel can make accurate future capacity prognostics under different storage conditions. Due to the superiority of its flexibility and knowledge-data-motivation, the developed approach could be extended and help engineers monitor or capture the future capacity degradation trajectory of other types of batteries when their relevant data become available, which in turn will benefit the life management of battery-based energy storage applications.

Suggested Citation

  • Peng, Qiao & Li, Wei & Fowler, Michael & Chen, Tao & Jiang, Wei & Liu, Kailong, 2024. "Battery calendar degradation trajectory prediction: Data-driven implementation and knowledge inspiration," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006212
    DOI: 10.1016/j.energy.2024.130849
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    2. de Hoog, Joris & Timmermans, Jean-Marc & Ioan-Stroe, Daniel & Swierczynski, Maciej & Jaguemont, Joris & Goutam, Shovon & Omar, Noshin & Van Mierlo, Joeri & Van Den Bossche, Peter, 2017. "Combined cycling and calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life profile validation," Applied Energy, Elsevier, vol. 200(C), pages 47-61.
    3. Zhou, Ze & Liu, Zhitao & Su, Hongye & Zhang, Liyan, 2023. "Planning of static and dynamic charging facilities for electric vehicles in electrified transportation networks," Energy, Elsevier, vol. 263(PE).
    4. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Fan, Chuanxin & Liu, Kailong & Zhu, Tao & Peng, Qiao, 2024. "Understanding of Lithium-ion battery degradation using multisine-based nonlinear characterization method," Energy, Elsevier, vol. 290(C).
    6. Feng, Fei & Yang, Rui & Meng, Jinhao & Xie, Yi & Zhang, Zhiguo & Chai, Yi & Mou, Lisha, 2022. "Electrochemical impedance characteristics at various conditions for commercial solid–liquid electrolyte lithium-ion batteries: Part. 2. Modeling and prediction," Energy, Elsevier, vol. 243(C).
    7. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2023. "A novel method for co-optimizing battery sizing and charging strategy of battery electric bus fleets: An application to the city of Paris," Energy, Elsevier, vol. 285(C).
    8. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Liu, Kailong & Ashwin, T.R. & Hu, Xiaosong & Lucu, Mattin & Widanage, W. Dhammika, 2020. "An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
    2. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Che, Yunhong & Zheng, Yusheng & Wu, Yue & Sui, Xin & Bharadwaj, Pallavi & Stroe, Daniel-Ioan & Yang, Yalian & Hu, Xiaosong & Teodorescu, Remus, 2022. "Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network," Applied Energy, Elsevier, vol. 323(C).
    4. Guo, Yuanjun & Yang, Zhile & Liu, Kailong & Zhang, Yanhui & Feng, Wei, 2021. "A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system," Energy, Elsevier, vol. 219(C).
    5. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    6. Li, Penghua & Zhang, Zijian & Grosu, Radu & Deng, Zhongwei & Hou, Jie & Rong, Yujun & Wu, Rui, 2022. "An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    8. Che, Yunhong & Deng, Zhongwei & Li, Penghua & Tang, Xiaolin & Khosravinia, Kavian & Lin, Xianke & Hu, Xiaosong, 2022. "State of health prognostics for series battery packs: A universal deep learning method," Energy, Elsevier, vol. 238(PB).
    9. Liu, Kailong & Ashwin, T.R. & Hu, Xiaosong & Lucu, Mattin & Widanage, W. Dhammika, 2020. "An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    11. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    14. Yan, Lisen & Peng, Jun & Gao, Dianzhu & Wu, Yue & Liu, Yongjie & Li, Heng & Liu, Weirong & Huang, Zhiwu, 2022. "A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery," Energy, Elsevier, vol. 243(C).
    15. Li, Qingbo & Lu, Taolin & Lai, Chunyan & Li, Jiwei & Pan, Long & Ma, Changjun & Zhu, Yunpeng & Xie, Jingying, 2024. "Lithium-ion battery capacity estimation based on fragment charging data using deep residual shrinkage networks and uncertainty evaluation," Energy, Elsevier, vol. 290(C).
    16. Wei, Meng & Ye, Min & Zhang, Chuanwei & Li, Yan & Zhang, Jiale & Wang, Qiao, 2023. "A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling," Energy, Elsevier, vol. 283(C).
    17. Jia Guo & Yaqi Li & Kjeld Pedersen & Daniel-Ioan Stroe, 2021. "Lithium-Ion Battery Operation, Degradation, and Aging Mechanism in Electric Vehicles: An Overview," Energies, MDPI, vol. 14(17), pages 1-22, August.
    18. Xue, Qiao & Li, Junqiu & Xu, Peipei, 2022. "Machine learning based swift online capacity prediction of lithium-ion battery through whole cycle life," Energy, Elsevier, vol. 261(PA).
    19. Li, Renzheng & Wang, Hui & Dai, Haifeng & Hong, Jichao & Tong, Guangyao & Chen, Xinbo, 2022. "Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network," Energy, Elsevier, vol. 250(C).
    20. Lai, Xin & Zhou, Long & Zhu, Zhiwei & Zheng, Yuejiu & Sun, Tao & Shen, Kai, 2023. "Experimental investigation on the characteristics of coulombic efficiency of lithium-ion batteries considering different influencing factors," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.