IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224033759.html
   My bibliography  Save this article

Multi-innovation adaptive Kalman filter algorithm for estimating the SOC of lithium-ion batteries based on singular value decomposition and Schmidt orthogonal transformation

Author

Listed:
  • Xiao, Jie
  • Xiong, Yonglian
  • Zhu, Yucheng
  • Zhang, Chao
  • Yi, Ting
  • Qian, Xing
  • Fan, Yongsheng
  • Hou, Quanhui

Abstract

The state of charge (SOC) of lithium battery is a key parameter for effective management of battery management systems (BMS). To address the problems of low precision, complex computation and poor robustness of traditional charging state estimation methods, an enhanced algorithm based on Unscented Kalman filter (UKF) is proposed. The singular value decomposition (SVD) method is adopted to ensure the normal operation of the Unscented Kalman Filter (UKF) algorithm even when the matrix P lacks positive semi-definiteness from a mathematical perspective. This enhancement significantly improves the theoretical robustness of UKF. Schmidt orthogonal transformation is concurrently used to reduce the computational complexity in the sampling point selection process, and the multi-innovation theory is combined with adaptive noise control to further improve the accuracy of SOC estimation. The algorithm is validated using the Urban Dynamometer Driving Schedule (UDDS) condition. The simulation results are excited using Singular value decomposition-multi-innovation adaptive Schmidt orthogonal unscented Kalman filter method (SVD-MIASOUKF). 0.95 % and 1.29 % of maximum errors are obtained at 25 °C and −10 °C, while the maximum errors are 2.46 %–2.99 % using SVD-UKF and UKF. The proposed approach shows faster convergence speed and higher estimation accuracy in comparison to traditional algorithms.

Suggested Citation

  • Xiao, Jie & Xiong, Yonglian & Zhu, Yucheng & Zhang, Chao & Yi, Ting & Qian, Xing & Fan, Yongsheng & Hou, Quanhui, 2024. "Multi-innovation adaptive Kalman filter algorithm for estimating the SOC of lithium-ion batteries based on singular value decomposition and Schmidt orthogonal transformation," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033759
    DOI: 10.1016/j.energy.2024.133597
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.